Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 53(1): 58, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238208

RESUMO

BACKGROUND: Imputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to investigate putative causal variants and genes that underpin economically important traits. Merino wool is globally sought after for luxury fabrics, but some key wool quality attributes are unfavourably correlated with the characteristic skin wrinkle of Merinos. In turn, skin wrinkle is strongly linked to susceptibility to "fly strike" (Cutaneous myiasis), which is a major welfare issue. Here, we use whole-genome sequence data in a multi-trait GWAS to identify pleiotropic putative causal variants and genes associated with changes in key wool traits and skin wrinkle. RESULTS: A stepwise conditional multi-trait GWAS (CM-GWAS) identified putative causal variants and related genes from 178 independent quantitative trait loci (QTL) of 16 wool and skin wrinkle traits, measured on up to 7218 Merino sheep with 31 million imputed whole-genome sequence (WGS) genotypes. Novel candidate gene findings included the MAT1A gene that encodes an enzyme involved in the sulphur metabolism pathway critical to production of wool proteins, and the ESRP1 gene. We also discovered a significant wrinkle variant upstream of the HAS2 gene, which in dogs is associated with the exaggerated skin folds in the Shar-Pei breed. CONCLUSIONS: The wool and skin wrinkle traits studied here appear to be highly polygenic with many putative candidate variants showing considerable pleiotropy. Our CM-GWAS identified many highly plausible candidate genes for wool traits as well as breech wrinkle and breech area wool cover.


Assuntos
Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética , Animais , Hialuronan Sintases/genética , Metionina Adenosiltransferase/genética , Herança Multifatorial , Proteínas de Ligação a RNA/genética , Fenômenos Fisiológicos da Pele/genética , Fibra de Lã/normas
2.
Genet Sel Evol ; 53(1): 56, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193030

RESUMO

BACKGROUND: Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). RESULTS: Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from - 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. CONCLUSIONS: Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.


Assuntos
Peso Corporal/genética , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Transcriptoma , Fibra de Lã/normas , Animais , Estudo de Associação Genômica Ampla/métodos , Leucócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Seleção Artificial , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Genes (Basel) ; 10(11)2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717789

RESUMO

The keratin-associated proteins (KAPs) are structural components of hair/wool fibres. All of the KAPs identified to date contain cysteine, which is thought to form disulphide bonds cross-linking the keratin intermediate filaments. Here, we report the identification of a KAP gene in sheep that would produce a protein that contains a high proportion (63.2 mol%) of glycine and tyrosine, but would not contain any cysteine. This suggests that other forms of intra- and inter-strand interaction may occur with this KAP, such as interactions via ring-stacking and hydrogen-bonding. The gene was dissimilar to any previously reported KAP gene, and was therefore assigned to a new family, and named KRTAP36-1. The KRTAP36-1 genome sequence was almost identical to some EST sequences from sheep and goat skin follicles, suggesting that it is present and expressed in sheep and goats. A BLAST search of the human genome assembly sequence did not reveal any human homologue. Three variant sequences (named A to C) of ovine KRTAP36-1 were identified and four single nucleotide polymorphisms (SNPs) were detected. One SNP was located 32 bp upstream of the coding region, and all of the others were in the coding region and were nonsynonymous. After correcting for potential linkage to the proximal KRTAP20-1, variant B of KRTAP36-1 was found to be associated with increased prickle factor (PF) in wool, suggesting that variation in the gene may have the potential to be used as gene marker for breeding sheep with lower PF.


Assuntos
Queratinas/genética , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Lã/química , Substituição de Aminoácidos , Animais , Cisteína/genética , Feminino , Glicina/genética , Ligação de Hidrogênio , Queratinas/química , Domínios Proteicos , Tirosina/genética , Fibra de Lã/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...