Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.380
Filtrar
1.
Plast Reconstr Surg ; 151(2): 245-254, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696318

RESUMO

BACKGROUND: Recent studies show evidence that surgical nerve decompression could improve cutaneous blood flow (CBF), which might benefit ulcer healing. However, the change of CBF and sympathetic fibers after nerve compression is poorly understood. In the current study, a unilateral sciatic nerve compression model was created in Sprague-Dawley rats. METHODS: A laser Doppler imaging system was applied to assess the CBF of the regions below the ankles. Immunohistochemistry and transmission electron microscopy were used to investigate the histopathologic changes of sympathetic fibers in sciatic nerve samples. RESULTS: Laser Doppler imaging revealed decreased CBF of both the lesional limb and the contralesional limb, which occurred earlier in the lesional side, indicating an enhanced sympathetic tone on vasomotor function. Intraneural density of sympathetic fibers decreased on both sides and the ultrastructure of unmyelinated fibers of both sides degenerated in a nonsynchronized manner. CONCLUSIONS: The study revealed nonsynchronized reduced CBF of bilateral hind limbs with paradoxically degenerated and diminished sympathetic fibers in bilateral sciatic nerves after unilateral sciatic nerve compression. These results may validate the importance of and broaden the indications for surgical nerve decompression in preventing or treating foot ulcers.


Assuntos
Fibras Adrenérgicas , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Microcirculação , Nervo Isquiático/cirurgia , Nervo Isquiático/fisiologia
2.
Biochem Biophys Res Commun ; 587: 49-57, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864395

RESUMO

Increased sympathetic nerve excitability has been reported to aggravate a variety of chronic pain conditions, and an increase in the number of sympathetic nerve fibers in the dorsal root ganglion (DRG) has been found in neuropathic pain (NP) models. However, the mechanism of the neurotransmitter norepinephrine (NE) released by sympathetic nerve fiber endings on the excitability of DRG neurons is still controversial, and the adrenergic receptor subtypes involved in this biological process are also controversial. In our study, we have two objectives: (1) To determine the effect of the neurotransmitter NE on the excitability of different neurons in DRG; (2) To determine which adrenergic receptors are involved in the excitability of DRG neurons by NE released by sprouting sympathetic fibers. In this experiment, a unique field potential recording method of spinal cord dorsal horn was innovatively adopted, which can be used for electrophysiological study in vivo. The results showed that: Forty days after SNI, patch clamp and field potential recording methods confirmed that NE enhanced the excitability of ipsilateral DRG large neurons, and then our in vivo electrophysiological results showed that the α2 receptor blocker Yohimbine could block the excitatory effect of NE on A-fiber and the inhibitory effect on C-fiber, while the α2A-adrenergic receptor agonist guanfacine (100 µM) had the same biological effect as NE. Finally, we concluded that NE from sympathetic fiber endings is involved in the regulation of pain signaling by acting on α2A-adrenergic receptors in DRG.


Assuntos
Fibras Adrenérgicas/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/fisiopatologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Fibras Adrenérgicas/patologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Gânglios Espinais/fisiopatologia , Guanfacina/farmacologia , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/fisiopatologia , Nervos Espinhais/metabolismo , Nervos Espinhais/fisiopatologia , Técnicas Estereotáxicas , Ioimbina/farmacologia
3.
Nat Metab ; 3(11): 1536-1551, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34782792

RESUMO

Beiging of white adipose tissue (WAT) is associated with an increase of anti-inflammatory M2-like macrophages in WAT. However, mechanisms through which M2-like macrophages affect beiging are incompletely understood. Here, we show that the macrophage cytokine Slit3 is secreted by adipose tissue macrophages and promotes cold adaptation by stimulating sympathetic innervation and thermogenesis in mice. Analysing the transcriptome of M2-like macrophages in murine inguinal WAT (iWAT) after cold exposure, we identify Slit3 as a secreted cytokine. Slit3 binds to the ROBO1 receptor on sympathetic neurons to stimulate Ca2+/calmodulin-dependent protein kinase II signalling and norepinephrine release, which enhances adipocyte thermogenesis. Adoptive transfer of Slit3-overexpressing M2 macrophages to iWAT promotes beiging and thermogenesis, whereas mice that lack Slit3 in myeloid cells are cold-intolerant and gain more weight. Our findings shed new light on the integral role of M2-like macrophages for adipose tissue homeostasis and uncover the macrophage-Slit3-sympathetic neuron-adipocyte signalling axis as a regulator of long-term cold adaptation.


Assuntos
Tecido Adiposo/inervação , Tecido Adiposo/fisiologia , Fibras Adrenérgicas/fisiologia , Macrófagos/metabolismo , Proteínas de Membrana/biossíntese , Termogênese , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/metabolismo , Animais , Plasticidade Celular , Metabolismo Energético , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos/genética , Fosforilação , Ligação Proteica , Receptores Imunológicos/metabolismo , Temperatura , Termogênese/genética , Proteínas Roundabout
4.
Folia Histochem Cytobiol ; 59(3): 157-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34581422

RESUMO

INTRODUCTION: The heart innervation is made up of plexo-ganglionic formation containing sympathetic, parasympathetic, and sensory components. We examined the distribution and neurochemical coding of the ganglia and nerve fibers in the chinchilla's heart. MATERIAL AND METHODS: The heart sections of 10 male and 10 female adult chinchillas were processed in accordance with the thiocholine method for acetylcholine esterase (AChE), and the SPG method for detecting the presence of adrenergic fibers was applied. The routine technique of immunohistochemical (IHC) staining with primary antibodies directed against ChAT, VAChT, DbH, TH, CART, NPY, VIP, GAL and SOM was used. The secondary antibodies were conjugated with Alexa Fluor 488 and Alexa Fluor 555 fluorophores. RESULTS: The epicardium contained ganglia and nerve fibers, the myocardium had a few ganglion neurocytes and nerve fibers, and the endocardium contained only nerve fibers. In the epicardium, AChE-positive fibers were more prevalent than SPG-positive fibers. All the ganglion cells were immunopositive for ChAT and VAChT. Some cells also had a positive reaction to DbH and TH. Fibers containing cholinergic and adrenergic markers were numerous, while many of them were ChAT/DbH- and VAChT/TH-positive. CART/NPY and CART/VIP, as well as CART and GAL, were observed to be colocalized in ganglion neurocytes, as well as in individual cells. The nerve fibers were found to contain all the neurotransmitters we tested for, as well as the following co-occurrences: ChAT/DbH, VAChT/TH, CART/NPY, CART/VIP, CART/GAL, and CART/SOM. CONCLUSIONS: Our analysis of the neurochemical profile of the nerve structures in chinchilla's heart showed that, despite interspecies differences, the general pattern of the distribution of autonomic nervous system structures is similar to that of other mammals' species, including humans.


Assuntos
Fibras Adrenérgicas , Gânglios , Animais , Chinchila , Feminino , Fluoresceínas , Humanos , Masculino , Neurônios , Ácidos Sulfônicos
5.
Bull Exp Biol Med ; 171(2): 281-285, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34173919

RESUMO

We used specific histochemical fluorescence-microscopic method of visualization of catecholamines to study adrenergic innervation of the thyroid gland tissue, blood vessels of the thyroid gland, cervical lymphatic vessel and lymph nodes in rats during correction of hypothyroidism with a bioactive formulation (Vozrozhdenie Plus balm with Potentilla alba L.). In experimental hypothyroidism, adrenergic innervation of the thyroid gland and the wall of the cervical lymph node, concentrated mainly along the arterial vessels and the cervical lymphatic vessel, retained its structural formations (plexuses and varicosities), but diffusion of catecholamines outside these formations was observed. Correction with the bioactive formulation restored of the contours of the nerve plexuses and varicosities and their brighter fluorescence in the thyroid gland and cervical lymphatic vessel and node. During correction of hypothyroidism with the bioactive formulation, reorganization of regional lymphatic vessels and nodes was more pronounced than reorganization of the thyroid gland.


Assuntos
Hipotireoidismo , Linfonodos/patologia , Vasos Linfáticos/patologia , Glândula Tireoide/irrigação sanguínea , Glândula Tireoide/inervação , Fibras Adrenérgicas/efeitos dos fármacos , Fibras Adrenérgicas/patologia , Fibras Adrenérgicas/ultraestrutura , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Hipotireoidismo/diagnóstico por imagem , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/efeitos dos fármacos , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Iodeto de Potássio/farmacologia , Iodeto de Potássio/uso terapêutico , Ratos , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Hormônios Tireóideos/uso terapêutico
6.
J Neurophysiol ; 126(1): 170-180, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133241

RESUMO

A small proportion of postganglionic muscle sympathetic single units can be inhibited during sympathoexcitatory stressors in humans. However, whether these responses are dependent on the specific stressor or the level of sympathoexcitation remains unclear. We hypothesize that, when matched by sympathoexcitatory magnitude, different stressors can evoke similar proportions of inhibited single units. Multiunit and single-unit muscle sympathetic nerve activity (MSNA) were recorded in seven healthy young males at baseline and during 1) rhythmic handgrip exercise (40% of maximum voluntary contraction) and 2) acute isocapnic hypoxia (partial pressure of end-tidal O2 47 ± 3 mmHg). Single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. By design, rhythmic handgrip and isocapnic hypoxia similarly increased multiunit total MSNA [Δ273 ± 208 vs. Δ254 ± 193 arbitrary units (AU), P = 0.84] and single-unit spike frequency (Δ8 ± 10 vs. Δ12 ± 13 spikes/min, P = 0.12). Among 19 identified single units, the proportions of activated (47% vs. 68%), nonresponsive (32% vs. 16%), and inhibited (21% vs. 16%) single units were not different between rhythmic handgrip and isocapnic hypoxia (P = 0.42). However, only 9 (47%) single units behaved with concordant response patterns across both stressors (7 activated, 1 nonresponsive, and 1 inhibited during both stressors). During the 1-min epoch with the highest increase in total MSNA during hypoxia (Δ595 ± 282 AU, P < 0.01) only one single unit was inhibited. These findings suggest that the proportions of muscle sympathetic single units inhibited during stress are associated with the level of sympathoexcitation and not the stressor per se in healthy young males.NEW & NOTEWORTHY Subpopulations of muscle sympathetic single units can be inhibited during mild sympathoexcitatory stress. We demonstrate that rhythmic handgrip exercise and isocapnic hypoxia, when matched by multiunit sympathoexcitation, induce similar proportions of single-unit inhibition, highlighting that heterogeneous single-unit response patterns are related to the level of sympathoexcitation independent of the stressor type. Interestingly, only 47% of single units behaved with concordant response patterns between stressors, suggesting the potential for functional specificity within the postganglionic neuronal pool.


Assuntos
Potenciais de Ação/fisiologia , Fibras Adrenérgicas/fisiologia , Exercício Físico/fisiologia , Força da Mão/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/fisiologia , Adulto , Hemodinâmica/fisiologia , Humanos , Masculino , Periodicidade , Adulto Jovem
7.
Clin Neurophysiol ; 132(7): 1537-1542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023631

RESUMO

OBJECTIVE: Changes in baroreflex sensitivity have been reported in patients with idiopathic Parkinson's disease (PD). We sought to investigate the hypothesis that patients with isolated rapid eye movement (REM)-sleep behavior disorder (iRBD), known to be a prodromal stage for PD, will show abnormalities in baroreflex control. METHODS: Ten iRBD patients were compared to 10 sex- and age-matched healthy controls. Their cardiovascular parameters and muscle sympathetic nerve activity (MSNA) were evaluated at rest and during baroreflex stimulation. RESULTS: MSNA at rest was higher in iRBD patients (burst frequency [BF]: 44 ± 3 bursts/min; burst incidence [BI]: 60 ± 8 bursts/100 heartbeats) as compared to the controls (BF: 29 ± 3 bursts/min, p < 0.001; BI: 43 ± 9 bursts/100 heartbeats, p < 0.001). During baroreflex stimulation, iRBD patients showed increased absolute values of MSNA (BF: F = 62.728; p < 0.001; BI: F = 16.277; p < 0.001) as compared to the controls. The iRBD patients had decreased diastolic blood pressure at baseline and during lower body negative pressure, but the level of significance was not met. CONCLUSION: Our study shows increased MSNA and impaired baroreflex control in iRBD patients. We propose that the inhibitory effect of locus coeruleus on baroreflex function might be impaired, leading to the disinhibition of sympathetic outflow. SIGNIFICANCE: These findings might reflect the destruction of brain areas due to the ascending P-α-synuclein deposits in iRBD patients.


Assuntos
Fibras Adrenérgicas/fisiologia , Barorreflexo/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia/métodos
8.
J Clin Neurosci ; 87: 80-83, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33863540

RESUMO

Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder characterized by slowly progressive cerebellar ataxia. Previously, autonomic symptoms or dysfunction have not been reported. To evaluate subclinical autonomic dysfunction regarding thermoregulatory function in SCA, we recorded sympathetic outflow to skin in a DRPLA patient confirmed by genetic analysis. We recorded skin sympathetic nerve activity (SSNA), which was elicited and recorded by using the microneurographical technique. In results, the resting frequency of SSNA bursts was very low (8.2 ± 0.4 bursts/min [institutional normal range: 20.8 ± 2.4 bursts/min]). However, acceleration of SSNA bursts induced by mental arithmetic stress was confirmed. The amplitude of reflex bursts induced by electrical stimuli was slightly low (9.6 ± 1.6 µV [institutional normal range: 10.9 ± 2.2 µV]), and the reflex latency was mildly prolonged (872 ± 23.7 msec [institutional normal range: 761.9 ± 51.7 msec]). These results suggest potentially central autonomic dysfunction in this patient with DRPLA. To our knowledge, this is the first report to record SSNA and confirm subclinical autonomic dysfunction in a case with DRPLA.


Assuntos
Fibras Adrenérgicas/fisiologia , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/fisiopatologia , Condução Nervosa/fisiologia , Fenômenos Fisiológicos da Pele , Pele/inervação , Atrofia , Cerebelo/patologia , Estimulação Elétrica/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Reflexo/fisiologia
9.
Bull Exp Biol Med ; 170(3): 283-287, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33452972

RESUMO

Adrenergic innervation in the tissue of the cervical, mesenteric, and popliteal lymph nodes in rats of different age groups (from 2-45 days to 24 months) was studied using the specific fluorescence-microscopic imaging of catecholamines. Adrenergic innervation in the lymph nodes of rats is present from the first days of life, but it develops and complicates during postnatal ontogeny and is fully formed by thedays 20-30 of life. By the age of one month, adrenergic innervation represents a well-formed apparatus in all parts of the node, i.e. in the capsule, trabeculae, and cortical and medullary substance. These are brightly fluorescent nerve fibers that form plexuses with regularly located multiple varicosities. In senile animals, the density and number of plexuses in all parts of the lymph node are preserved, but the brightness of plexuses decreases, plexus fibers become discontinuous, varicosities become less frequent or disappear. These changes are seen in lymph nodes from different body regions.


Assuntos
Fibras Adrenérgicas/metabolismo , Linfonodos/metabolismo , Animais , Osso Esponjoso/metabolismo , Catecolaminas/metabolismo , Microscopia de Fluorescência , Organogênese/fisiologia , Ratos , Ratos Wistar
10.
J Therm Biol ; 95: 102813, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33454042

RESUMO

BACKGROUND: Fibromyalgia syndrome is defined as a complex disease, characterized by chronic widespread musculoskeletal pain and other symptoms. The factors underlying physiopathology of fibromyalgia are not well understood, complicating its diagnosis and management. OBJECTIVES: To evaluate the peripheral vascular blood flow of the skin of the hands and the core body temperature as indirect measures of sympathetic adrenergic activity of the nervous system and its relationship to nitric oxide levels (NO) in women with fibromyalgia compared with healthy controls. METHODS: Forty-two women with fibromyalgia and 52 healthy women were enrolled in this observational pilot study. We used infrared thermography of the hands and an infrared dermal thermometer to evaluate the peripheral vascular blood flow and tympanic and axillary core body temperature, respectively. We measured NO levels using the ozone chemiluminescence-based method. RESULTS: Two-way analysis of covariance (ANCOVA) showed that the tympanic (P=0.002) and hand temperatures were significantly higher in the patients with fibromyalgia than in the controls (P≤0.001). Significant associations were also found between serum NO levels and minimum temperatures at the dorsal center of the dominant hand (ß=-3.501; 95% confidence interval [CI] -6.805, ­0.198; P= 0.038), maximum temperature (ß=-5.594; 95% CI ­10.106, ­1.081; P=0.016), minimum temperature (ß=-4.090; 95% CI ­7.905, ­0.275; P=0.036), and mean temperature (ß=-5.519; 95% CI ­9.933, ­1.106; P=0.015) of the center of the palm of the non-dominant hand, maximum temperature at the thenar eminence of the dominant hand (ß=-5.800; 95% CI ­10.508, ­1.092; P=0.017), and tympanic temperature (ß=-9.321; 95% CI ­17.974, ­0.669; P=0.035) in the controls. CONCLUSIONS: Our findings indicate that the women with fibromyalgia showed higher tympanic core body and hand temperature than the healthy controls. Moreover, there were negative associations between hand peripheral vasodilation and NO in the healthy women but not in those with fibromyalgia, suggesting a dysfunction of sympathetic cutaneous neural control.


Assuntos
Fibras Adrenérgicas/fisiologia , Temperatura Corporal , Fibromialgia/fisiopatologia , Óxido Nítrico/metabolismo , Pele/irrigação sanguínea , Sistema Nervoso Simpático/fisiopatologia , Idoso , Feminino , Fibromialgia/metabolismo , Mãos/irrigação sanguínea , Mãos/inervação , Humanos , Microvasos/inervação , Microvasos/fisiopatologia , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Pele/inervação , Termografia
11.
Immunity ; 53(5): 1050-1062.e5, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207210

RESUMO

Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection. Both CD4+ T cells and myeloid cells produced pathogenic levels of VEGF-A within HSV-1-infected corneas, and CD4+ cell depletion promoted reinnervation of HSK corneas with sensory nerves. In vitro, VEGF-A from infected corneas repressed sensory nerve growth and promoted sympathetic nerve growth. Neutralizing VEGF-A in vivo using bevacizumab inhibited sympathetic innervation, promoted sensory nerve regeneration, and alleviated disease. Thus, VEGF-A can shape the sensory and sympathetic nerve landscape within the cornea, with implications for the treatment of blinding corneal disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Córnea/inervação , Córnea/metabolismo , Ceratite Herpética/etiologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fibras Adrenérgicas , Animais , Córnea/imunologia , Córnea/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Herpesvirus Humano 1 , Humanos , Imunofenotipagem , Ceratite Herpética/metabolismo , Ceratite Herpética/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Depleção Linfocítica , Camundongos , Neurite (Inflamação) , Índice de Gravidade de Doença
12.
Front Endocrinol (Lausanne) ; 11: 567545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101199

RESUMO

Background: Brown adipose tissue (BAT) is present in humans and rodents, and contributes to energy expenditure by converting energy stored in lipids and glucose into heat. Beta adrenergic receptor (ß-AR) agonists have been proposed as pharmacological tools to activate BAT, but they lack selectivity for this tissue. This study aimed to investigate the possibility to apply electrical neurostimulation as a novel approach to activate BAT by promoting the sympathetic outflow towards BAT. Methods: Male C57BL/6J mice were treated with either unilateral electrical neurostimulation of interscapular BAT or with the ß3-AR agonist CL316,243. Thermogenesis, nutrient uptake by BAT and downstream signaling of adrenergic receptors in BAT were examined. Results: Electrical neurostimulation and ß3-AR agonism acutely increased heat production by BAT, as evidenced by an increase in local temperature in BAT, without influencing the core body temperature. Both treatments acutely increased tyrosine hydroxylase content in the nerve terminals thereby confirming enhanced sympathetic activity. In addition, we identified increased phosphorylation of hormone-sensitive lipase coinciding with reduced intracellular lipids in BAT, without affecting acute nutrient uptake from plasma. The increased BAT temperature as induced by electrical neurostimulation was reversed by ß3-AR antagonism. Conclusion: Electrical neurostimulation acutely promotes thermogenesis in BAT as dependent on ß3-AR signaling. We anticipate that electrical neurostimulation may be further developed as a novel strategy to activate BAT and thereby combat (cardio)metabolic diseases.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Neuroestimuladores Implantáveis , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Fibras Adrenérgicas/efeitos dos fármacos , Fibras Adrenérgicas/metabolismo , Animais , Estimulação Elétrica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Neuroinflammation ; 17(1): 282, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967684

RESUMO

BACKGROUND: Alterations in the immune system are a complication of spinal cord injury (SCI) and have been linked to an excessive sympathetic outflow to lymphoid organs. Still unknown is whether these peripheral immune changes also contribute for the deleterious inflammatory response mounted at the injured spinal cord. METHODS: We analyzed different molecular outputs of the splenic sympathetic signaling for the first 24 h after a thoracic compression SCI. We also analyzed the effect of ablating the splenic sympathetic signaling to the innate immune and inflammatory response at the spleen and spinal cord 24 h after injury. RESULTS: We found that norepinephrine (NE) levels were already raised at this time-point. Low doses of NE stimulation of splenocytes in vitro mainly affected the neutrophils' population promoting an increase in both frequency and numbers. Interestingly, the interruption of the sympathetic communication to the spleen, by ablating the splenic nerve, resulted in reduced frequencies and numbers of neutrophils both at the spleen and spinal cord 1 day post-injury. CONCLUSION: Collectively, our data demonstrates that the splenic sympathetic signaling is involved in the infiltration of neutrophils after spinal cord injury. Our findings give new mechanistic insights into the dysfunctional regulation of the inflammatory response mounted at the injured spinal cord.


Assuntos
Fibras Adrenérgicas/fisiologia , Infiltração de Neutrófilos/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Baço/inervação , Baço/fisiologia , Fibras Adrenérgicas/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/imunologia , Vértebras Torácicas
14.
Neuroimmunomodulation ; 27(1): 58-68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32610310

RESUMO

INTRODUCTION: In arthritic mice, a sympathetic influence is proinflammatory from the time point of immunization until the onset of disease (days 0-32), but reasons are unknown. Disruption of the major anti-inflammatory pathway through Gαs-coupled receptors probably play a role. For example, noradrenaline cannot operate via anti-inflammatory ß2-adrenoceptors but through proinflammatory α1/2-ad-renoceptors. This might happen, first, through a loss of sympathetic nerve fibers in inflamed tissue with low neurotransmitter levels (noradrenaline only binds to high-affinity α-adrenoceptors) and, second, through an alteration in G-protein receptor coupling with a predominance of α-adrenergic signaling. We hypothesized that both mechanisms play a role in the course of collagen type II-induced arthritis (CIA) in the spleen in mice. METHODS: In CIA mice, nerve fiber density in the spleen was quantified by immunohistochemistry techniques. The functional impact of sympathetic nerve fibers in the spleen was studied by a micro-superfusion technique of spleen slices with a focus on the secretion of IFN-γ and IL-6 (proinflammatory) and TGF-ß (anti-inflammatory). RESULTS: During CIA, sympathetic nerve fibers get increasingly lost from day14 until day 55 after immunization. The influence of electrically released noradrenaline diminishes in the course of arthritis. At all investigated time points (days 14, 32, and 55), only proinflammatory neuronal α-adrenergic effects on cytokine secretion were demonstrated (i.e., stimulation of IFN-γ and IL-6 and inhibition of TGF-ß). CONCLUSION: Sympathetic nerve fibers are rapidly lost in the spleen, and only proinflammatory α-adrenergic neuronal regulation of cytokine secretion takes place throughout the course of arthritis. These results support a predominance of a proinflammatory α-adrenergic sympathetic influence in arthritis.


Assuntos
Artrite Experimental/imunologia , Interferon gama/biossíntese , Interleucina-6/biossíntese , Baço/inervação , Fator de Crescimento Transformador beta/biossíntese , Fibras Adrenérgicas/metabolismo , Neurônios Adrenérgicos , Animais , Artrite Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos DBA , Baço/imunologia
15.
Elife ; 92020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420872

RESUMO

Memory reconsolidation is a fundamental plasticity process in the brain that allows established memories to be changed or erased. However, certain boundary conditions limit the parameters under which memories can be made plastic. Strong memories do not destabilize, for instance, although why they are resilient is mostly unknown. Here, we investigated the hypothesis that specific modulatory signals shape memory formation into a state that is reconsolidation-resistant. We find that the activation of the noradrenaline-locus coeruleus system (NOR-LC) during strong fear memory encoding increases molecular mechanisms of stability at the expense of lability in the amygdala of rats. Preventing the NOR-LC from modulating strong fear encoding results in the formation of memories that can undergo reconsolidation within the amygdala and thus are vulnerable to post-reactivation interference. Thus, the memory strength boundary condition on reconsolidation is set at the time of encoding by the action of the NOR-LC.


New memories must go through a period of consolidation to become stable and long-lasting in the brain. Recalling memories can make them unstable again, so that they need reconsolidating. Treatments in which the reconsolidation process is interrupted have been used to help weaken traumatic fear memories. However, memories of severe trauma, such as in post-traumatic stress disorder, are particularly resistant to reconsolidation treatments. Haubrich et al. used rats to study how trauma shapes memory formation and what biological mechanisms are involved in preventing the destabilization/reconsolidation cycle. The rats were exposed to a sound at the same time as receiving a mild electric shock. Half of the rats experienced the shock once, creating a 'weak' memory. The other half experienced it ten times, creating a 'strong' memory. The rats' memory of the electric shock was measured by seeing how they responded when they heard the sound again without the shock. Some of the rats were given the drug anisomycin, an antibiotic that stops cells from making new proteins and is known for producing amnesia, to block reconsolidation of the memory after hearing the sound again. Treatment with the drug reduced future responses in the rats that had experienced the shock once, but had no effect on the rats that had experienced it ten times, demonstrating that the stronger memories were resistant to reconsolidation therapy. The rats with the strong memories also had lower levels of proteins in the brain that are involved in plasticity ­ the ability of the brain to change and adapt. Haubrich et al. hypothesized that the stability of the strong memories could be caused by signaling from the locus coeruleus, a region of the brainstem involved in the response to stress. When the signaling from the locus coeruleus was blocked in the strong-memory rats, they became responsive to reconsolidation therapy with anisomycin. These results help to better understand how traumatic memories become engrained, potentially leading to new treatment options for people with post-traumatic stress disorder.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Locus Cerúleo/fisiologia , Consolidação da Memória/fisiologia , Fibras Adrenérgicas/fisiologia , Animais , Anisomicina/farmacologia , Masculino , Consolidação da Memória/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
16.
Curr Neuropharmacol ; 18(9): 790-808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364079

RESUMO

Blood pressure is a highly controlled cardiovascular parameter that normally guarantees an adequate blood supply to all body tissues. This parameter is mainly regulated by peripheral vascular resistance and is maintained by local mediators (i.e., autacoids), and by the nervous and endocrine systems. Regarding the nervous system, blood pressure can be modulated at the central level by regulating the autonomic output. However, at peripheral level, there exists a modulation by activation of prejunctional monoaminergic receptors in autonomic- or sensory-perivascular fibers. These modulatory mechanisms on resistance blood vessels exert an effect on the release of neuroactive substances from the autonomic or sensory fibers that modify blood pressure. Certainly, resistance blood vessels are innervated by perivascular: (i) autonomic sympathetic fibers (producing vasoconstriction mainly by noradrenaline release); and (ii) peptidergic sensory fibers [producing vasodilatation mainly by calcitonin gene-related peptide (CGRP) release]. In the last years, by using pithed rats, several monoaminergic mechanisms for controlling both the sympathetic and sensory perivascular outflows have been elucidated. Additionally, several studies have shown the functions of many monoaminergic auto-receptors and hetero-receptors expressed on perivascular fibers that modulate neurotransmitter release. On this basis, the present review: (i) summarizes the modulation of the peripheral vascular tone by adrenergic, serotoninergic, dopaminergic, and histaminergic receptors on perivascular autonomic (sympathetic) and sensory fibers, and (ii) highlights that these monoaminergic receptors are potential therapeutic targets for the development of novel medications to treat cardiovascular diseases (with some of them explored in clinical trials or already in clinical use).


Assuntos
Sistema Nervoso Autônomo/metabolismo , Monoaminas Biogênicas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Amina Biogênica/metabolismo , Fibras Adrenérgicas/metabolismo , Animais , Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Humanos , Receptores Adrenérgicos/metabolismo
17.
Folia Histochem Cytobiol ; 58(1): 54-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32202307

RESUMO

INTRODUCTION: Cholinergic and adrenergic innervation of the pancreas in chinchilla (Chinchilla Laniger Molina) was examined in this study. The pancreas is both an exocrine and endocrine gland with autonomic and sensory innervation presented by the numerous nerve fibers and small agglomerations of nerve cells. MATERIAL AND METHODS: Investigations were performed on 16 adult chinchillas of both sexes. The material was collected immediately after death of the animals. Histochemical methods: AChE and SPG were used, in addition to routine technique of single and double immunohistochemical (IHC) staining using whole mount specimens and freezing sections with a thickness of 8 to 12 µm. In the immunofluorescence staining, primary antibodies directed against markers used to identify cholinergic - ChAT and VAChT, and adrenergic - DbH and TH neurons. Secondary antibodies were coupled to Alexa Fluor 488 and Alexa Fluor 555 fluorophores. RESULTS: Histochemical studies (AChE) revealed that chinchilla pancreatic cholinergic innervation consisted of ganglionic neurocytes and numerous nerve fibers. These structures are located in the parenchyma of the exocrine part of the organ in close proximity to blood vessels and are present within the walls of the pancreatic ducts and interstitial connective tissue. A delicate fiber network around the Langerhans islets was also observed. The most numerous cholinergic structures were found in the head and tail, and the least numbers were found in the body of the pancreas. The SPG method revealed that adrenergic fibers form a network in the adventitia of blood vessels, and individual fibers run throughout the pancreatic parenchyma. Moreover, adrenergic nerve fibers were observed around the ganglionic neurocytes. This innervation was similar in all parts of the investigated organ. IHC investigations allowed observations of both the cholinergic and adrenergic activities of autonomic nerve structures. Additionally, using ChAT/DbH double staining, colocalization of these substances was observed in the fibers of the pancreatic parenchyma that passed through the cholinergic ganglia. Colocalization of VAChT and TH was found in nerve fibers of the exocrine part, in the walls of blood vessels, and in individual nerve cells. Colocalization of ChAT/DbH and VAChT/TH was observed in the single nerve cells and in the small (2-3 cell) ganglia. ChAT- and DbH-immunopositive nerve fibers were found in the area of the islets of Langerhans. CONCLUSIONS: The results indicate a more intense cholinergic innervation of the chinchilla's pancreas, which is represented by both ganglia and nerve fibers, while adrenergic structures are mainly represented by fibers and only single neurocytes. This arrangement of the investigated structures in this species may imply a major role for hormonal control of exocrine secretion in rodents.


Assuntos
Fibras Adrenérgicas , Fibras Colinérgicas , Pâncreas/inervação , Animais , Chinchila , Feminino , Gânglios/anatomia & histologia , Masculino
18.
Curr Pharm Des ; 26(3): 358-362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003664

RESUMO

In recent years, the development of Assisted Reproductive Technique, the egg and embryo donation changed substantially the role of the uterus in recent years. It provided a higher chance for a pregnancy even in women over 45 years or post-menopause. In fact, the number of aged patients and in peri/post-menopause in pregnancy is nowadays increasing, but it increases obstetrical and neonatal related problems. The human uterus is richly innervated and modified especially during pregnancy and labor, and it is endowed with different sensory, parasympathetic, sympathetic and peptidergic neurofibers. They are differently distributed in uterine fundus, body and cervix, and they are mainly observed in the stroma and around arterial vessel walls in the myometrial and endometrial layers. Many neurotransmitters playing important roles in reproductive physiology are released after stimulation by adrenergic or cholinergic nerve fibers (the so called sympathetic/parasympathetic co-transmission). Immunohistochemical study demonstrated the localization and quantitative distribution of neurofibers in the fundus, the body and cervix of young women of childbearing age. Adrenergic and cholinergic effects of the autonomous nervous system are the most implicated in the uterine functionality. In such aged women, the Adrenergic and AChE neurofibers distribution in the fundus, body and cervix is progressively reduced by increasing age. Adrenergic and AChE neurotransmitters were closely associated with the uterine arteries and myometrial smooth muscles, and they reduced markedly by ageing. The Adrenergic and AChE neurofibers decreasing has a dramatical and negative impact on uterine physiology, as the reduction of pregnancy chance and uterine growth, and the increase of abortion risk and prematurity.


Assuntos
Fibras Adrenérgicas/fisiologia , Fibras Colinérgicas/fisiologia , Reprodução , Útero/inervação , Feminino , Humanos , Gravidez
19.
Rofo ; 192(6): 549-560, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31994154

RESUMO

PURPOSE: Evaluation of the efficacy and safety of chemical renal denervation by image-guided periarterial ethanol injection in pigs with emphasis on histopathological characteristics. MATERIALS AND METHODS: Unilateral renal periarterial ethanol injection under general anesthesia was performed in 16 animals with the contralateral kidney serving as the control. All interventions were performed in an open MRI system under real-time multiplanar guidance. In 10 pigs an ethanol-carbostesin contrast agent mixture was injected with amounts of 5 ml (6 animals, group I) and 10 ml (4 animals, group II). 6 pigs (group III) were treated with 10 ml of an ethanol-polyacrylic (2 %) mixture. Four weeks after treatment, all animals underwent MRI including MRA. After euthanasia, macroscopic and histologic examination of the kidneys, renal arteries and periarterial tissue was performed to assess nerve injury and potential side effects. Furthermore, the norepinephrine concentration (RTNEC) in the renal tissue was determined as a surrogate parameter of efficacy. RESULTS: Histologic signs of nerval degeneration with various degrees of severity and circumferential distribution were found in all groups. Injury depths ranged up to 7.6 mm. In groups II and III the nerve count was significantly lower on the treated side. Renal artery stenosis was not observed in any pig. In all pigs of group II treatment resulted in neural degeneration with a mean RTNEC reduction of 53 % (p < 0.02). In groups I and III significant changes in RTNEC were not observed. CONCLUSION: Image-guided percutaneous periarterial ethanol injection was efficient and safe for renal denervation. The detected variations in histologic outcome underlined the importance of the preclinical optimization of the technique in order to maximize treatment effects in humans. KEY POINTS: · Renal denervation by percutaneous periarterial ethanol injection is an effective and potentially safe procedure.. · The percutaneous approach is less prone to anatomical and procedural limitations compared to catheter-based procedures.. · The achievable nerve injury depth lies beyond those of current RFA-probes.. · Efficacy depends on amount, concentration, viscosity and periarterial distribution of the ethanol-mixture.. · Establishing an optimal balance between these parameters is mandatory for a maximum treatment effect at minimum risk for sensitive adjacent structures.. CITATION FORMAT: · Freyhardt P, Haage P, Walter A et al. Renal Sympathetic Denervation by Image-Guided Percutaneous Ethanol Injection - Histopathologic Characteristics, Efficacy and Safety. Fortschr Röntgenstr 2020; 192: 549 - 560.


Assuntos
Etanol , Rim/inervação , Imageamento por Ressonância Magnética/métodos , Simpatectomia Química/métodos , Fibras Adrenérgicas/efeitos dos fármacos , Fibras Adrenérgicas/patologia , Animais , Degeneração Neural , Segurança do Paciente , Suínos , Simpatectomia Química/efeitos adversos , Resultado do Tratamento
20.
Int J Cardiol ; 299: 110-115, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337551

RESUMO

BACKGROUND: The arterial switch operation (ASO) for repair of transposition of the great arteries (TGA) requires transection of the great arterial trunks and re-implantation of the coronary arteries into the neoaortic root resulting in cardiac sympathetic denervation which may affect myocardial blood flow (MBF) regulation. The aims of the present study were to evaluate sympathetic (re-)innervation in young adults after ASO and its impact on MBF. METHODS: Twelve patients (age 22.5 ±â€¯2.6 years) after ASO for TGA in the neonatal period and ten healthy controls (age 22.0 ±â€¯1.7 years) were included. Positron emission tomography (PET) was used for measuring cardiac sympathetic innervation with [11C]meta-hydroxyephedrine (mHED) and MBF with [15O]H2O PET at rest, during adenosine stimulation, and during sympathetic stimulation with cold pressor test. Cold pressor-induced MBF response capacity was calculated as maximal global MBF over peak rate-pressure product multiplied by 10'000. RESULTS: Global [11C]mHED uptake was significantly lower in patients compared to controls (7.0 ±â€¯2.3 versus 11.8 ±â€¯2.1%/min, p < 0.001). Global MBF was lower in patients compared to controls at rest and during adenosine-induced hyperemia (0.66 ±â€¯0.08 versus 0.82 ±â€¯0.15 ml/min/g, p = 0.005; 2.23 ±â€¯1.19 versus 3.36 ±â€¯1.04 ml/min/g, p = 0.030, respectively). Interestingly, MBF during cold pressor test did not differ between patients and controls (0.99 ±â€¯0.20 versus 1.07 ±â€¯0.16 ml/min/g, p = 0.330). However, cold pressor-induced MBF response capacity was significantly lower for patients as compared to controls (1.09 ±â€¯0.35 versus 1.44 ±â€¯0.39 ml/g/10,000 mmHg, p = 0.040). CONCLUSIONS: With only partial sympathetic re-innervation of the coronary arteries, maximal dilator capacity of the coronary microvasculature and cold pressor-induced MBF response capacity remain substantially impaired in young adults after ASO compared to healthy controls.


Assuntos
Fibras Adrenérgicas/fisiologia , Transposição das Grandes Artérias/tendências , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Coronária/fisiologia , Transposição dos Grandes Vasos/diagnóstico por imagem , Transposição dos Grandes Vasos/cirurgia , Transposição das Grandes Artérias/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/inervação , Vasos Coronários/fisiologia , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/tendências , Transposição dos Grandes Vasos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...