Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 21(11): 3034-42, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15978014

RESUMO

Septohippocampal cholinergic neurons play key roles in learning and memory processes, and in the generation of hippocampal theta rhythm. The range of receptors for endogenous modulators expressed on these neurons is unclear. Here we describe GABA(B) 1a/b receptor (GABA(B)R) and type 1 cannabinoid receptor (CB(1)R) expression in rat septal cholinergic [i.e. choline acetyltransferase (ChAT)-positive] cells. Using double immunofluorescent staining, we found that almost two-thirds of the cholinergic cells in the rat medial septum were GABA(B)R positive, and that these cells had significantly larger somata than did GABA(B)R-negative cholinergic neurons. We detected CB(1)R labelling in somata after axonal protein transport was blocked by colchicine. In these animals about one-third of the cholinergic cells were CB(1)R positive. These cells again had larger somata than CB(1)R-negative cholinergic neurons. The analyses confirmed that the size of GABA(B)R-positive and CB(1)R-positive cholinergic cells were alike, and all CB(1)R-positive cholinergic cells were GABA(B)R positive as well. CB(1)R-positive cells were invariably ChAT positive. All retrogradely labelled septohippocampal cholinergic cells were positive for GABA(B)R and at least half of them also for CB(1)R. These data shed light on the existence of at least two cholinergic cell types in the medial septum: one expresses GABA(B)R and CB(1)R, has large somata and projects to the hippocampus, whereas the other is negative for GABA(B)R and CB(1)R and has smaller somata. The results also suggest that cholinergic transmission in the hippocampus is fine-tuned by endocannabinoid signalling.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de GABA-B/metabolismo , Núcleos Septais/metabolismo , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Contagem de Células , Tamanho Celular , Colina O-Acetiltransferase/metabolismo , Fibras Colinérgicas/classificação , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Inibição Neural/fisiologia , Vias Neurais/metabolismo , Neurônios/classificação , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Ritmo Teta , Ácido gama-Aminobutírico/metabolismo
2.
Neuroscience ; 79(4): 1089-109, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9219969

RESUMO

Two types of tegmental pedunculopontine nucleus neurons have been reported previously based on their electrophysiological characteristics: type I neurons were characterized by low-threshold Ca spikes and type II neurons displayed a transient outward current. This report describes the membrane properties, synaptic inputs, morphologies and axonal projections of two subgroups of type II neurons examined in an in vitro slice preparation. Type II neurons were divided into two groups based on their spike durations: short-duration neurons with an action potential duration of 0.7-1.5 ms and long-duration neurons with an action potential duration of 1.6- 2.9 ms. Choline acetyltransferase immunohistochemistry combined with biocytin labeling indicated that 56% of short-duration neurons and 61% of long-duration neurons were immunopositive for choline acetyltransferase. Short-duration neurons had a high input resistance and the capacity to discharge with high frequency. By contrast, long-duration neurons had a low input resistance and low firing frequency and upon current injection displayed an accommodation (spike-frequency adaptation) before reaching a steady firing frequency. Microstimulation of the substantia nigra pars compacta evoked antidromic responses in both short-duration neurons (n=5/14, 36%) and long-duration neurons (n=20/39. 51%). Stimulations of the subthalamic nucleus and the substantia nigra pars reticulata induced in these neurons excitatory and inhibitory postsynaptic potentials, respectively. Short-duration neurons were dispersed equally throughout the extent of the tegmental pedunculopontine nucleus area, while long-duration neurons were located more in the rostral tegmental pedunculopontine nucleus. Short-duration neurons were small with two to four thin primary dendrites. Long-duration neurons were medium to large with three to six thick primary dendrites. Cell size was positively correlated with spike duration and axonal conduction velocity, but negatively with input resistance and spontaneous firing frequency. Both groups of neurons had ascending (toward thalamus, pretectal areas and tectum) and descending (toward pontomedullary reticular formation) axons in addition to nigropetal axons. Ascending axons were observed in 75% (6/8) of short-duration neurons and in 45% (15/33) of long-duration neurons, while nigropetal axons were observed in 50% (4/8) of short-duration neurons and in 76% (25/33) of long-duration neurons. These results suggest that the tegmental pedunculopontine nucleus cholinergic projection system is composed of heterogeneous populations of neurons in terms of electrophysiological and morphological characteristics as well as their distribution patterns in the nucleus.


Assuntos
Potenciais de Ação/fisiologia , Fibras Colinérgicas/fisiologia , Neurônios/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Fibras Colinérgicas/classificação , Estimulação Elétrica , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Auton Nerv Syst ; 52(2-3): 125-50, 1995 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-7615895

RESUMO

(1) Single nerve fibre action potentials (APs) of lower sacral nerve roots were recorded extracellularly with two pairs of wire electrodes during an operation in which an anterior root stimulator for bladder control was implanted in 9 humans with a spinal cord lesion and dyssynergia of the urinary bladder. Roots that were not saved and that were used to record from were later used for morphometry. (2) Nerve fibre groups were identified by conduction velocity distribution histograms of single afferent and efferent fibres and partly by nerve fibre diameter distribution histograms, and correlation analysis was performed. Group conduction velocity values were obtained additionally from compound action potentials (CAPs) evoked by electrical stimulation of nerve roots and the urinary bladder. (3) The group conduction velocities and group nerve fibre diameters had the following pair-values at 35.5 degrees C: Spindle afferents: SP1 (65 m/s/13.1 microns), SP2 (51/12.1); touch afferents: T1 (47/11.1), T2 (39/10.1), T3 (27/9.1), T4 (19/8.1); urinary bladder afferents: S1 (41 m/s/-), ST (35/-); alpha-motoneurons: alpha 13 (-/14.4), alpha 12 (65m/s/13.1 microns), alpha 11 (60?/12.1)(FF), alpha 2 (51/10.3)(FR), alpha 3 (41/8.2)(S); gamma-motoneurons: gamma beta (27/7.1), gamma 1 (21/6.6), gamma 21 (16/5.8), gamma 22 (14/5.1); preganglionic parasympathetic motoneurons: (10 m/s/3.7 microns). (4) The values of group conduction velocity and group nerve fibre diameter measured in the paraplegics were very similar to those obtained earlier from brain-dead humans and patients with no spinal cord lesions. Also, the number and the density of myelinated fibres were preserved in the roots. Thus, the classification and identification of nerve fibre groups remained preserved following spinal cord lesion. A direct comparison can thus be made of natural impulse patterns of afferent and efferent nerve fibres between paraplegics (pathologic) and brain-dead humans (supraspinal destroyed CNS, in many respects physiologic). (5) When changing the root temperature from 32 degrees C to 35.5 degrees C, the group conduction velocities changed in the following way in one case: SP2: 40 m/s (32 degrees C) to 50 m/s (35.5 degrees C), S1: 31.3 to 40, ST: 25 to 33.8, M: 12.5 to 13.8; alpha 2: 40 to 50, alpha 3: 33 to 40. The group conduction velocities showed different temperature dependence apart from SP2 fibres and alpha 2-motoneurons. (6) Upon retrograde bladder filling the urinary bladder stretch (S1) and tension receptor afferent (ST) activity levels were undulating and increased.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Fibras Colinérgicas/classificação , Condução Nervosa/fisiologia , Nervos Periféricos/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Potenciais de Ação/fisiologia , Adulto , Axônios/fisiologia , Fibras Colinérgicas/fisiologia , Fibras Colinérgicas/ultraestrutura , Estimulação Elétrica , Feminino , Gânglios Parassimpáticos/citologia , Gânglios Parassimpáticos/fisiologia , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Humanos , Masculino , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Nervos Periféricos/citologia , Bexiga Urinária/inervação , Urodinâmica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...