Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.436
Filtrar
1.
Physiol Rep ; 12(11): e16047, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837588

RESUMO

Acetate is a short-chain fatty acid (SCFA) that is produced by microbiota in the intestinal tract. It is an important nutrient for the intestinal epithelium, but also has a high plasma concentration and is used in the various tissues. Acetate is involved in endurance exercise, but its role in resistance exercise remains unclear. To investigate this, mice were administered either multiple antibiotics with and without oral acetate supplementation or fed a low-fiber diet. Antibiotic treatment for 2 weeks significantly reduced grip strength and the cross-sectional area (CSA) of muscle fiber compared with the control group. Intestinal concentrations of SCFAs were reduced in the antibiotic-treated group. Oral administration of acetate with antibiotics prevented antibiotic-induced weakness of skeletal muscle and reduced CSA of muscle fiber. Similarly, a low-fiber diet for 1 year significantly reduced the CSA of muscle fiber and fecal and plasma acetate concentrations. To investigate the role of acetate as an energy source, acetyl-CoA synthase 2 knockout mice were used. These mice had a shorter lifespan, reduced skeletal muscle mass and smaller CSA of muscle fiber than their wild type littermates. In conclusion, acetate derived from the intestinal microbiome can contribute to maintaining skeletal muscle performance.


Assuntos
Acetatos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Força Muscular , Músculo Esquelético , Animais , Acetatos/farmacologia , Acetatos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos , Masculino , Força Muscular/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Camundongos Knockout , Antibacterianos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Fibras na Dieta/farmacologia , Fibras na Dieta/metabolismo
2.
J Agric Food Chem ; 72(23): 13415-13430, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38824655

RESUMO

This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.


Assuntos
Colite , Colo , Microbioma Gastrointestinal , Mananas , NF-kappa B , Salmonella typhimurium , Transdução de Sinais , Receptor 2 Toll-Like , Animais , Mananas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Colo/microbiologia , Colo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colite/dietoterapia , Masculino , Humanos , Camundongos Endogâmicos C57BL , Fibras na Dieta/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Amorphophallus/química
3.
Food Res Int ; 189: 114535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876588

RESUMO

The impact of different forms of dietary fiber (total, insoluble or soluble) derived from the same source on health remains incompletely understood. In this study, the effects of total, insoluble, and soluble dietary fiber extracted from highland barley (HDF, HIDF, and HSDF) on combating obesity were evaluated and compared. A high-fat diet (HFD) was used to induce obesity in a murine model, followed by gavage administration of HDF, HIDF, or HSDF, and a comprehensive multi-omics approach was utilized to assess and compare the effects of these dietary fibers on obesity-related parameters. The results showed that all three dietary fibers significantly reduced body weight, modified blood lipid profiles, and ameliorated tissue damage in HFD-fed mice. Additionally, 16S rRNA sequencing analysis of mice feces showed that three types of dietary fiber exerted varying degrees of impact on the composition and abundance of gut microbiota while simultaneously promoting the biosynthesis of short-chain fatty acids. Specifically, HDF supplementation remarkably enhanced the abundance of Coprococcus, while HIDF and HSDF supplementation elevated the levels of Akkermansia and Allobaculum, respectively. Transcriptomic and proteomic results suggested the PPAR signaling pathway as a central regulatory mechanism influenced by these fibers. HDF and HIDF were particularly effective in modulating biological processes related to triglyceride and fatty acid metabolism, identifying Abcc3 and Dapk1 as potential targets. Conversely, HSDF primarily affected processes related to membrane lipids, ceramides, and phospholipids metabolism, with Pck1 identified as a potential target. Collectively, HDF, HIDF, and HSDF demonstrated distinct mechanisms in exerting exceptional anti-obesity properties. These insights may inform the development of personalized dietary interventions for obesity.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Fibras na Dieta , Microbioma Gastrointestinal , Hordeum , Camundongos Endogâmicos C57BL , Obesidade , Hordeum/química , Fibras na Dieta/farmacologia , Animais , Camundongos , Masculino , Fármacos Antiobesidade/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proteômica , Modelos Animais de Doenças , Multiômica
4.
Int J Biol Macromol ; 270(Pt 2): 132251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729488

RESUMO

The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.


Assuntos
Diabetes Mellitus Tipo 2 , Fibras na Dieta , Ácidos Graxos Voláteis , Fermentação , Microbioma Gastrointestinal , Hipoglicemiantes , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Alimentos de Soja , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/farmacologia , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Fígado/metabolismo , Fígado/efeitos dos fármacos
5.
Food Funct ; 15(11): 5942-5954, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38738974

RESUMO

Our laboratory previously extracted bound polyphenols (BPP) in insoluble dietary fiber from navel orange peel (NOP-IDF), and the aim of this study was to investigate the anti-inflammatory activity and potential molecular mechanisms of BPP by establishing an LPS-induced intestinal-like Caco-2/RAW264.7 co-culture inflammation model. The results demonstrated that BPP reduced the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the production of pro-inflammatory cytokines, nitric oxide (NO), and reactive oxidative species (ROS) during the inflammatory damage process. Furthermore, BPP alleviated the lipopolysaccharides (LPS)-induced intestinal barrier damage by attenuating the decrease in trans-epithelial electrical resistance (TEER), diamine oxidase (DAO) activity, and intestinal alkaline phosphatase (IAP) activity, as well as the downregulation of ZO-1, Occludin, and Claudin-1 protein expression levels. RNA-seq results on RAW264.7 cells in the co-culture model showed that the NF-κB and JAK-STAT pathways belonged to the most significantly affected signaling pathways in the KEGG analysis, and western blot confirmed that they are essential for the role of BPP in intestinal inflammation. Additionally, overexpression of the granulocyte-macrophage colony-stimulating factor (CSF2) gene triggered abnormal activation of the NF-κB and JAK-STAT pathways and high-level expression of inflammatory factors, while BPP effectively improved this phenomenon. The above results suggested that BPP could inhibit intestinal inflammatory injury and protect intestinal barrier integrity through CSF2-mediated NF-κB and JAK-STAT pathways.


Assuntos
Citrus sinensis , Técnicas de Cocultura , Fibras na Dieta , Lipopolissacarídeos , NF-kappa B , Polifenóis , Fatores de Transcrição STAT , Transdução de Sinais , Camundongos , NF-kappa B/metabolismo , NF-kappa B/genética , Animais , Humanos , Polifenóis/farmacologia , Citrus sinensis/química , Células CACO-2 , Lipopolissacarídeos/efeitos adversos , Células RAW 264.7 , Fibras na Dieta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Inflamação/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Frutas/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos
6.
J Agric Food Chem ; 72(23): 13099-13110, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807079

RESUMO

Whole-grain foods are rich in bound polyphenols (BPs) whose health benefits were largely underestimated compared with free polyphenols. We first found that DFBP (dietary fiber with BPs from oat bran) exhibited stronger colonic antioxidant activities than DF. 16S rRNA sequencing showed that DFBP selectively changed gut microbial composition, which reciprocally released BPs from DFBP. Released polyphenols from DFBP reduced excessive colonic ROS and exhibited colonic antioxidant activities via the ROS/Akt/Nrf2 pathway revealed by transcriptome and western blot analysis. Colonic antioxidant activities of DFBP mediated by gut microbiota were next proven by treating mice with broad-spectrum antibiotics. Next, Clostridium butyricum, as a distinguished bacterium after DFBP intervention, improved colonic antioxidant capacities synergistically with DFBP in HFD-fed mice. This was explained by the upregulated mRNA expression of esterase, and cellulase of Clostridium butyricum participated in releasing BPs. Our results would provide a solid basis for explaining the health benefits of whole grains.


Assuntos
Avena , Colo , Dieta Hiperlipídica , Fibras na Dieta , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polifenóis , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Camundongos , Polifenóis/farmacologia , Polifenóis/química , Polifenóis/administração & dosagem , Polifenóis/metabolismo , Avena/química , Avena/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Colo/metabolismo , Colo/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38783711

RESUMO

Dietary fibers and biotics have been shown to support gastrointestinal health in dogs, but are usually tested individually. There is value in testing fiber-biotic combinations that are commonly used commercially. Therefore, this study was conducted to determine the apparent total tract macronutrient digestibility (ATTD) of diets supplemented with fibers or biotics and to evaluate their effects on the fecal characteristics, metabolites, microbiota, and immunoglobulin A (IgA) concentrations of dogs. Twelve healthy adult female beagle dogs (age = 6.2 ±â€…1.6 yr; body weight = 9.5 ±â€…1.1 kg) were used in a replicated 3 × 3 Latin square design to test three treatments: 1) control diet based on rice, chicken meal, tapioca starch, and cellulose + a placebo treat (CT); 2) diet based on rice, chicken meal, garbanzo beans, and cellulose + a placebo treat (GB); 3) diet based on rice, chicken meal, garbanzo beans, and a functional fiber/prebiotic blend + a probiotic-containing treat (GBPP). In each 28-d period, a 22-d diet adaptation was followed by a 5-d fecal collection phase. Fasted blood samples were collected on day 28. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. ATTD of dry matter (DM), organic matter, and energy were lower (P < 0.001) and DM fecal output was higher (P < 0.01) in dogs fed GBPP than CT or GB, whereas ATTD of crude protein was higher (P < 0.001) in dogs fed CT and GBPP than GB. ATTD of fat was higher (P < 0.001) and wet fecal output was lower (P < 0.01) in dogs fed CT than GB or GBPP. Fecal DM% was higher (P < 0.001) in dogs fed CT than GBPP or GB, and higher in dogs fed GBPP than GB. Fecal short-chain fatty acid concentrations were higher (P < 0.001) in dogs fed GB than CT or GBPP, and higher in dogs fed GB than GBPP. Fecal IgA concentrations were higher (P < 0.01) in dogs fed GB than CT. Fecal microbiota populations were affected by diet, with alpha diversity being higher (P < 0.01) in dogs fed GB than CT, and beta diversity shifting following dietary fiber and biotic supplementation. The relative abundance of 24 bacterial genera was altered in dogs fed GB or GBPP than CT. Serum triglyceride concentrations were lower in dogs fed GB than GBPP or CT. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.


Functional fibers and biotics have demonstrated the potential to modulate the gut microbiome and improve gastrointestinal health in dogs, but are often tested individually. Research investigating unique fiber/biotic combinations is needed. Twelve dogs were used in a replicated 3 × 3 Latin square design to test the efficacy of three dietary treatments on apparent total tract macronutrient digestibility (ATTD) and the fecal characteristics, metabolites, microbiota, and immunoglobulin A concentrations of dogs. Treatments included a low-fiber control diet without prebiotics or probiotics + a placebo treat, a diet containing garbanzo beans + a placebo treat (GB), and a diet containing garbanzo beans and a prebiotic blend + a probiotic (Bacillus subtilis and Bacillus amyloliquefaciens) treat (GBPP). ATTD was reduced and stool output was greater in dogs fed GB or GBPP than controls. Fecal short-chain fatty acids were higher in dogs fed GB or GBPP than controls. Fecal immunoglobulin A was higher, while blood lipids were lower in dogs fed GB than control. Finally, GB and GBPP shifted fecal bacterial populations. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.


Assuntos
Ração Animal , Dieta , Fibras na Dieta , Suplementos Nutricionais , Digestão , Fezes , Microbioma Gastrointestinal , Animais , Cães , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Fezes/química , Fezes/microbiologia , Feminino , Digestão/efeitos dos fármacos , Digestão/fisiologia , Ração Animal/análise , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Nutrientes/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Prebióticos/administração & dosagem , Imunoglobulina A/metabolismo
8.
Behav Brain Res ; 470: 115048, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38761857

RESUMO

BACKGROUND: Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS: Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION: Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.


Assuntos
Ansiedade , Dieta Hiperlipídica , Inulina , Fígado , Obesidade , Estresse Oxidativo , Ratos Wistar , Animais , Feminino , Inulina/farmacologia , Inulina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ansiedade/metabolismo , Obesidade/metabolismo , Ratos , Suplementos Nutricionais , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças
9.
Vopr Pitan ; 93(2): 19-30, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38809796

RESUMO

A priority in the prevention and correction of immune disorders in athletes is the use of products with high nutrient density, fortified with various nutrients or bioactive compounds, as well as probiotic microorganisms. Probiotics help to maintain the gut microbiota, which is actively involved in the absorption of substances and energy and increases the host immune resistance. Dietary fiber, resistant to digestion in the small intestine, is fully or partially fermented in the large intestine and acts as an essential substrate for the growth and regulation of metabolic activity of normal flora, improves peristalsis and digestion. The purpose of the study was to evaluate the impact of a multi-strain probiotic in combination with dietary fiber on the immune status of basketball athletes during the training period. Material and methods. The study was conducted with the participation of 30 male basketball athletes aged 18 to 24 years. The athletes were randomly divided into 2 groups of 15 people. Athletes in the main group received 1 capsule of multi-strain probiotic (≥1.25×1010 CFU of 10 probiotic strains of bifidobacteria and lactobacilli) and 40 g of corn bran (as a source of dietary fiber) for 23 days. Athletes in the control group received 1 placebo capsule containing maltodextrin and breadcrumbs (40 g/day). Subpopulations of peripheral blood lymphocytes were studied by flow cytometry: T lymphocytes, T helper cells, T cytotoxic lymphocytes, NK cells, NKT cells, B lymphocytes, as well as lymphocytes carrying activation markers and apoptosis marker antigen. The content of cytokines in blood serum [FGF, Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-1ra, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17A, MCP-1, MIP-1α, MIP-1ß, PDGF-BB, RANTES, TNF-α, VEGF] was determined using a multiplex immunoassay. Results. Calculation of the absolute number of lymphocytes revealed a tendency (0.05

Assuntos
Atletas , Fibras na Dieta , Probióticos , Humanos , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Fibras na Dieta/farmacologia , Adolescente , Adulto , Basquetebol , Adulto Jovem , Citocinas/sangue
10.
PLoS One ; 19(5): e0300292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718051

RESUMO

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Assuntos
Remodelação Óssea , Cromo , Dieta Hiperlipídica , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos , Cromo/administração & dosagem , Cromo/farmacologia , Masculino , Remodelação Óssea/efeitos dos fármacos , Nanopartículas/química , Fibras na Dieta/farmacologia , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/administração & dosagem , Suplementos Nutricionais , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Ratos Wistar , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Osteogênese/efeitos dos fármacos
11.
J Agric Food Chem ; 72(21): 12130-12145, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748495

RESUMO

Colorectal cancer (CRC) is a common malignant tumor that occurs in the colon. Gut microbiota is a complex ecosystem that plays an important role in the pathogenesis of CRC. Our previous studies showed that the soluble dietary fiber of foxtail millet (FMB-SDF) exhibited significant antitumor activity in vitro. The present study evaluated the anticancer potential of FMB-SDF in the azoxymethane (AOM)- and dextran sodium sulfate (DSS)-induced mouse CRC models. The results showed that FMB-SDF could significantly alleviate colon cancer symptoms in mice. Further, we found that FMB-SDF consumption significantly altered gut microbiota diversity and the overall structure and regulated the abundance of some microorganisms in CRC mice. Meanwhile, KEGG pathway enrichment showed that FMB-SDF can also alleviate the occurrence of colon cancer in mice by regulating certain cancer-related signaling pathways. In conclusion, our findings may provide a novel approach for the prevention and biotherapy of CRC.


Assuntos
Bactérias , Neoplasias Colorretais , Fibras na Dieta , Microbioma Gastrointestinal , Setaria (Planta) , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Camundongos , Setaria (Planta)/química , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Humanos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Azoximetano , Camundongos Endogâmicos C57BL
12.
Int J Biol Macromol ; 269(Pt 2): 132130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723828

RESUMO

Elicited pumpkin was evaluated as a potential daily consumption product able to modulate the gut microbiota. An in vitro dynamic colonic fermentation performance with microbiota from obese volunteers was used. Prebiotic effects were observed after the pumpkin treatment. Bifidobacterium abundance was maintained during the treatment period whereas Lactobacillus increased in the transversal and descending colon. Conversely, Enterobacteriaceae and Clostridium groups were more stable, although scarce decreasing trends were observed for same species. Increments of Lactobacillus acidophilus and Limosilactobacillus fermentum (old Lactobacillus fermentum) were observed in the whole colonic tract after the treatment period. However, modulatory effects were mainly observed in the transversal and descending colon. Diverse bacteria species were increased, such as Akkermansia muciniphila, Bacteroides dorei, Cloacibacillus porcorum, Clostridium lactatifermentans, Ruminococcus albus, Ruminococcus lactaris, Coprococcus catus, Alistipes shahii or Bacteroides vulgatus. The prebiotic effect of the elicited pumpkin was provided by the fiber of the pumpkin, suggesting a release of pectin molecules in the transversal and distal colonic tract through low cellulosic fiber degradation, explaining the increases in the total propionic and butyric acid in these colonic sections. Also, a possible modulatory role of carotenoids from the sample was suggested since carotenes were found in the descending colon. Hence, the results of this research highlighted pumpkin as a natural product able to modulate the microbiota towards a healthier profile.


Assuntos
Cucurbita , Fibras na Dieta , Disbiose , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Cucurbita/química , Cucurbita/microbiologia , Humanos , Disbiose/microbiologia , Fibras na Dieta/farmacologia , Prebióticos , Fermentação , Masculino , Adulto , Feminino , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos
13.
Mol Nutr Food Res ; 68(9): e2300829, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682734

RESUMO

Beta-glucans and arabinoxylans are known for their immunostimulatory properties. However, in vivo these have been documented almost exclusively following parenteral administration, underemphasizing oral intake. C57BL/6 mice are fed either a control diet or a diet supplemented with yeast-derived whole ß-glucan particle (yWGP) or with rice-derived arabinoxylan (rice bran-1) at a concentration of 1%, 2.5%, or 5% weight/weight (w/w) for 2 weeks. Thereafter, cells from blood, bone marrow, and spleen are collected for ex vivo stimulation with various microbial stimuli. Dietary intake of yWGP for 2 weeks at concentrations of 1% and 2.5% w/w increases ex vivo cytokine production in mouse blood and bone marrow, whereas 5% w/w yWGP shows no effect. In the spleen, cytokine production remains unaffected by yWGP. At a concentration of 1% w/w, rice bran-1 increases ex vivo cytokine production by whole blood, but 2.5% and 5% w/w cause inhibitory effects in bone marrow and spleen. This study demonstrates that dietary yWGP and rice bran-1 induce immune priming in mouse blood and bone marrow, with the strongest effects observed at 1% w/w. Future human trials should substantiate the efficacy of dietary ß-glucans and arabinoxylans to bolster host immunity, focusing on dose optimization.


Assuntos
Imunidade Inata , Camundongos Endogâmicos C57BL , Oryza , Xilanos , beta-Glucanas , Animais , Xilanos/farmacologia , beta-Glucanas/farmacologia , beta-Glucanas/administração & dosagem , Oryza/química , Imunidade Inata/efeitos dos fármacos , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia , Citocinas/metabolismo , Masculino , Relação Dose-Resposta a Droga , Fibras na Dieta/farmacologia
14.
Nutr Res ; 126: 123-137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688104

RESUMO

Plantago is rich in soluble fiber, known for its beneficial health effects. Given this, we hypothesized that Plantago consumption might positively influence blood lipid in adults. Researchers have conducted numerous randomized controlled trials (RCTs), revealing the impacts of Plantago consumption on various blood lipid parameters. However, findings regarding specific blood lipid parameters have shown variability. This study aimed to comprehensively assess the effect of Plantago consumption on blood lipid parameters. Eligible studies evaluating the effects of Plantago consumption on blood lipid were searched in 5 electronic databases published up to August 2023. Analysis used a random effects model to determine weighted mean difference and 95% confidence intervals. In total, 29 RCTs including 2769 participants were included. Compared with the control group, Plantago consumption significantly reduced total cholesterol (TC) by 0.28 mmol/L and low-density lipoprotein cholesterol (LDL-C) by 0.35 mmol/L, correlating to an estimated 7% decrease in cardiovascular event risk. Conversely, no substantial effects were observed on high-density lipoprotein cholesterol or triglycerides. Subgroup analyses of 29 RCTs revealed that TC concentrations were significantly lowered in studies that included male participants, those who were healthy, or had lipid disorders. Additionally, TC and LDL-C were significantly lower in participants consuming Plantago husk or psyllium, and soluble fiber intake was specifically effective in lowering TC, LDL-C, and triglycerides. In conclusion, Plantago consumption can significantly lower TC and LDL-C concentrations. The findings will provide crucial insights into the potential of Plantago in dietary strategies for blood lipid management.


Assuntos
LDL-Colesterol , Colesterol , Plantago , Humanos , LDL-Colesterol/sangue , Colesterol/sangue , Adulto , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Feminino , Triglicerídeos/sangue , HDL-Colesterol/sangue , Pessoa de Meia-Idade , Dieta
15.
Food Funct ; 15(8): 4446-4461, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563504

RESUMO

High protein and fiber diets are becoming increasingly popular for weight loss; however, the benefits or risks of high protein and fiber diets with a normal calorie level for healthy individuals still need to be elucidated. In this study, we explored the role and mechanisms of long-term high protein and/or konjac glucomannan diets on the metabolic health of healthy mouse models. We found that high konjac glucomannan contents improved the glucose tolerance of mice and both high protein and high konjac glucomannan contents improved the serum lipid profile but increased the TNF-α levels. In the liver, high dietary protein contents reduced the expression of the FASN gene related to fatty acid synthesis. Interactions of dietary protein and fiber were shown in the signaling pathways related to lipid and glucose metabolism of the liver and the inflammatory status of the colon, wherein the high protein and high konjac glucomannan diet downregulated the expression of the SREBF1 and FXR genes in the liver and downregulated the expression of TNF-α genes in the colon compared to the high protein diet. High konjac glucomannan contents reduced the colonic secondary bile acid levels including DCA and LCA; this was largely associated with the changed microbiota profile and also contributed to improved lipid and glucose homeostasis. In conclusion, high protein diets improved lipid homeostasis and were not a risk to metabolic health, while high fiber diets improved glucose and lipid homeostasis by modulating colonic microbiota and bile acid profiles, and a high protein diet supplemented with konjac glucomannan might improve hepatic lipid homeostasis and colonic inflammation in healthy mouse models through long-term intervention.


Assuntos
Ácidos e Sais Biliares , Colo , Microbioma Gastrointestinal , Glucose , Metabolismo dos Lipídeos , Mananas , Camundongos Endogâmicos C57BL , Animais , Mananas/farmacologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Ácidos e Sais Biliares/metabolismo , Colo/metabolismo , Colo/microbiologia , Glucose/metabolismo , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Fígado/metabolismo , Fibras na Dieta/farmacologia , Fibras na Dieta/metabolismo
16.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675716

RESUMO

The health benefits of young barley leaves, rich in dietary fiber, have been studied for several decades; however, their beneficial effects on the intestinal microenvironment remain to be elucidated. To investigate the effects of young barley leaf-derived dietary fiber (YB) on the gut microbiota and immunity, mice were fed an AIN-93G diet containing cellulose or YB and subjected to subsequent analysis. The population of MHC-II-positive conventional dendritic cells (cDCs) and CD86 expression in the cDCs of Peyer's patches were elevated in the YB-fed mice. MHC-II and CD86 expression was also elevated in the bone marrow-derived DCs treated with YB. 16S-based metagenomic analysis revealed that the gut microbiota composition was markedly altered by YB feeding. Among the gut microbiota, Lachnospiraceae, mainly comprising butyrate-producing NK4A136 spp., were overrepresented in the YB-fed mice. In fact, fecal butyrate concentration was also augmented in the YB-fed mice, which coincided with increased retinaldehyde dehydrogenase (RALDH) activity in the CD103+ cDCs of the mesenteric lymph nodes. Consistent with elevated RALDH activity, the population of colonic IgA+ plasma cells was higher in the YB-fed mice than in the parental control mice. In conclusion, YB has beneficial effects on the gut microbiota and intestinal immune system.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Hordeum , Folhas de Planta , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hordeum/química , Fibras na Dieta/farmacologia , Folhas de Planta/química , Camundongos , Retinal Desidrogenase/metabolismo , Butiratos/metabolismo , Fezes/microbiologia
17.
Nutrients ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674850

RESUMO

Polyphenols and fermentable fibers have shown favorable effects on gut microbiota composition and metabolic function. However, few studies have investigated whether combining multiple fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here, an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB blends independently led to significant increases in the absolute abundance of select beneficial taxa, namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and PPFB supplementation but not PP alone while increased antioxidant capacity was only evident with both PP and PPFB supplementation. These findings demonstrated that, while the independent blends displayed selective positive impacts on gut states, the combination of both blends provided an additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive influence on gut microbial composition and function to build resiliency toward dysbiosis.


Assuntos
Fibras na Dieta , Ácidos Graxos Voláteis , Fezes , Fermentação , Microbioma Gastrointestinal , Indóis , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Polifenóis/farmacologia , Humanos , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Adulto , Masculino , Amônia/metabolismo , Feminino , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Antioxidantes/farmacologia , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Adulto Jovem
18.
Nutrients ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674901

RESUMO

The consumption of functional foods in a daily diet is a promising approach for the maintenance of cognitive health. The present study examines the effects of water-soluble prebiotic dietary-fiber, partially hydrolyzed guar gum (PHGG), on cognitive function and mental health in healthy elderly individuals. Participants consumed either 5 g/day of PHGG or a placebo daily for 12 weeks in this randomized, double-blind, placebo-controlled, and parallel-group study. An assessment of cognitive functions, sleep quality, and subjective mood evaluations was performed at baseline and after 8 and 12 weeks of either PHGG or placebo intake. The visual memory scores in cognitive function tests and sleepiness on rising scores related to sleep quality were significantly improved in the PHGG group compared to the placebo group. No significant differences were observed in mood parameters between the groups. Vigor-activity scores were significantly improved, while the scores for Confusion-Bewilderment decreased significantly in the PHGG group when compared to the baseline. In summary, supplementation with PHGG was effective in improving cognitive functions, particularly visual memory, as well as enhancing sleep quality and vitality in healthy elderly individuals (UMIN000049070).


Assuntos
Cognição , Galactanos , Mananas , Gomas Vegetais , Humanos , Galactanos/farmacologia , Mananas/farmacologia , Mananas/administração & dosagem , Gomas Vegetais/farmacologia , Método Duplo-Cego , Cognição/efeitos dos fármacos , Idoso , Masculino , Feminino , Sono/efeitos dos fármacos , Prebióticos/administração & dosagem , Qualidade do Sono , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Hidrólise , Memória/efeitos dos fármacos , Suplementos Nutricionais , Pessoa de Meia-Idade , Voluntários Saudáveis , Afeto/efeitos dos fármacos
19.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580029

RESUMO

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.


Assuntos
Celulose , Colite , Fibras na Dieta , Algas Comestíveis , Microbioma Gastrointestinal , Laminaria , Celulose/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fibras na Dieta/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Masculino , Solubilidade , Inflamação/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças
20.
Int J Food Sci Nutr ; 75(4): 349-368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38659110

RESUMO

This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.


Assuntos
Anticolesterolemiantes , LDL-Colesterol , Suplementos Nutricionais , Hipercolesterolemia , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/dietoterapia , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , Colesterol/sangue , Animais , Fitosteróis/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Probióticos/farmacologia , Probióticos/uso terapêutico , Fibras na Dieta/farmacologia , Receptores de LDL/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Alho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...