Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 77: 174-187, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030607

RESUMO

Efforts to stably over-express recombinant proteins in cyanobacteria are hindered due to cellular proteasome activity that efficiently degrades foreign proteins. Recent work from this lab showed that a variety of exogenous genes from plants, humans, and bacteria can be successfully and stably over-expressed in cyanobacteria, as fusion constructs with the abundant ß-subunit of phycocyanin (the cpcB gene product) in quantities up to 10-15% of the total cell protein. The CpcB*P fusion proteins did not simply accumulate in a soluble free-floating form in the cell but, rather, they assembled as functional (α,ß*P)3CpcG1 heterohexameric light-harvesting phycocyanin antenna discs, where α is the CpcA α-subunit of phycocyanin, ß*P is the CpcB*P fusion protein, the asterisk denoting fusion, and CpcG1 is the 28.9 kDa phycocyanin disc linker polypeptide (Hidalgo Martinez et al., 2022). The present work showed that the CpcA α-subunit of phycocyanin and the CpcG1 28.9 kDa phycocyanin disc linker polypeptide can also successfully serve as leading sequences in functional heterohexameric (α*P,ß)3CpcG1 and (α,ß)3CpcG1*P fusion constructs that permit stable recombinant protein over-expression and accumulation. These were shown to form a residual light-harvesting antenna and to contribute to photosystem-II photochemistry in the cyanobacterial cells. The work suggested that cyanobacterial cells need phycocyanin for light absorption, photosynthesis, and survival and, therefore, may tolerate the presence of heterologous recombinant proteins, when the latter are in a fusion construct configuration with essential cellular proteins, e.g., phycocyanin, thus allowing their substantial and stable accumulation.


Assuntos
Cianobactérias , Ficobilissomas , Humanos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Ficocianina/genética , Ficocianina/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982707

RESUMO

Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/genética , Ficobilissomas/metabolismo , Filogenia , Cianobactérias/genética , Cianobactérias/metabolismo , Ficobilinas , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo
3.
Water Res ; 223: 118958, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994786

RESUMO

Large cyanobacterial colonies, which are unique niches for heterotrophic bacteria, are vital for blooming in eutrophic waters. However, the seasonal dynamics of molecular insights into microbes in these colonies remain unclear. Here, the community composition and metabolism pattern of microbes inhabiting large cyanobacterial colonies (> 120 µm, collected from Lake Taihu in China) were investigated monthly. The community structure of total microbes was mostly influenced by chlorophyll a (Chl a), total phosphorus (TP) concentration, dissolved oxygen, and temperature, whereas the colony-associated bacteria (excluding Cyanobacteria) were mostly influenced by total organic carbon, NO3-, and PO43- concentrations, indicating different response patterns of Cyanobacteria and the associated bacteria to water nutrient conditions. Metatranscriptomic data suggested that similar to that of Cyanobacteria, the gene expression patterns of the most active bacteria, such as Proteobacteria and Bacteroidetes, were not strictly dependent on season but separated by Chl a concentrations. Samples in July and September (high-bloom period) and February and March (non-bloom period) formed two distinct clusters, whereas those of other months (low-bloom period) clustered together. The accumulation of transcripts for pathways, such as phycobilisome from Cyanobacteria and bacterial chemotaxis and flagellum, phosphate metabolism, and sulfur oxidation from Proteobacteria, was enriched in high- and low-bloom periods than in non-bloom period. Network analyses revealed that Cyanobacteria and Proteobacteria exhibited coordinated transcriptional patterns in almost all divided modules. Modules had Cyanobacteria-dominated hub gene were positively correlated with temperature, Chl a, total dissolved phosphorus, and NH4+ and NO2- concentrations, whereas modules had Proteobacteria-dominated hub gene were positively correlated with TP and PO43-. These results indicated labor division might exist in the colonies. This study provided metabolic insights into microbes in large cyanobacterial colonies and would support the understanding and management of the year-round cyanobacterial blooms.


Assuntos
Cianobactérias , Microbiologia da Água , Carbono , Clorofila A , Cianobactérias/genética , Monitoramento Ambiental , Eutrofização , Regulação Bacteriana da Expressão Gênica , Lagos , Ficobilissomas/genética , Proteobactérias/genética
4.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35276007

RESUMO

Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a "tycheposon"-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.


Assuntos
Synechococcus , Ecossistema , Ficobiliproteínas/genética , Ficobilissomas/genética , Filogenia , Synechococcus/genética
5.
mBio ; 12(6): e0340821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933453

RESUMO

Biological nitrogen fixation is an energy-intensive process that contributes significantly toward supporting life on this planet. Among nitrogen-fixing organisms, cyanobacteria remain unrivaled in their ability to fuel the energetically expensive nitrogenase reaction with photosynthetically harnessed solar energy. In heterocystous cyanobacteria, light-driven, photosystem I (PSI)-mediated ATP synthesis plays a key role in propelling the nitrogenase reaction. Efficient light transfer to the photosystems relies on phycobilisomes (PBS), the major antenna protein complexes. PBS undergo degradation as a natural response to nitrogen starvation. Upon nitrogen availability, these proteins are resynthesized back to normal levels in vegetative cells, but their occurrence and function in heterocysts remain inconclusive. Anabaena 33047 is a heterocystous cyanobacterium that thrives under high light, harbors larger amounts of PBS in its heterocysts, and fixes nitrogen at higher rates compared to other heterocystous cyanobacteria. To assess the relationship between PBS in heterocysts and nitrogenase function, we engineered a strain that retains large amounts of the antenna proteins in its heterocysts. Intriguingly, under high light intensities, the engineered strain exhibited unusually high rates of nitrogenase activity compared to the wild type. Spectroscopic analysis revealed altered PSI kinetics in the mutant with increased cyclic electron flow around PSI, a route that contributes to ATP generation and nitrogenase activity in heterocysts. Retaining higher levels of PBS in heterocysts appears to be an effective strategy to enhance nitrogenase function in cyanobacteria that are equipped with the machinery to operate under high light intensities. IMPORTANCE The function of phycobilisomes, the large antenna protein complexes in heterocysts has long been debated. This study provides direct evidence of the involvement of these proteins in supporting nitrogenase activity in Anabaena 33047, a heterocystous cyanobacterium that has an affinity for high light intensities. This strain was previously known to be recalcitrant to genetic manipulation and, hence, despite its many appealing traits, remained largely unexplored. We developed a genetic modification system for this strain and generated a ΔnblA mutant that exhibited resistance to phycobilisome degradation upon nitrogen starvation. Physiological characterization of the strain indicated that PBS degradation is not essential for acclimation to nitrogen deficiency and retention of PBS is advantageous for nitrogenase function.


Assuntos
Anabaena/enzimologia , Anabaena/efeitos da radiação , Proteínas de Bactérias/metabolismo , Nitrogenase/metabolismo , Ficobilissomas/metabolismo , Anabaena/química , Anabaena/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Luz , Nitrogenase/química , Nitrogenase/genética , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Ficobilissomas/química , Ficobilissomas/genética , Ficobilissomas/efeitos da radiação
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33707213

RESUMO

Marine picocyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean, where they exert a profound influence on elemental cycling and energy flow. The use of transmembrane chlorophyll complexes instead of phycobilisomes as light-harvesting antennae is considered a defining attribute of Prochlorococcus Its ecology and evolution are understood in terms of light, temperature, and nutrients. Here, we report single-cell genomic information on previously uncharacterized phylogenetic lineages of this genus from nutrient-rich anoxic waters of the eastern tropical North and South Pacific Ocean. The most basal lineages exhibit optical and genotypic properties of phycobilisome-containing cyanobacteria, indicating that the characteristic light-harvesting antenna of the group is not an ancestral attribute. Additionally, we found that all the indigenous lineages analyzed encode genes for pigment biosynthesis under oxygen-limited conditions, a trait shared with other freshwater and coastal marine cyanobacteria. Our findings thus suggest that Prochlorococcus diverged from other cyanobacteria under low-oxygen conditions before transitioning from phycobilisomes to transmembrane chlorophyll complexes and may have contributed to the oxidation of the ancient ocean.


Assuntos
Complexos de Proteínas Captadores de Luz/genética , Oxigênio/análise , Prochlorococcus/genética , Água do Mar/microbiologia , Clorofila/genética , Cianobactérias/classificação , Cianobactérias/genética , Evolução Molecular , Genes Bacterianos/genética , Genoma Bacteriano/genética , Nutrientes/análise , Oceano Pacífico , Ficobilissomas/genética , Filogenia , Pigmentos Biológicos/genética , Prochlorococcus/classificação , Água do Mar/química
7.
Biomolecules ; 9(11)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752285

RESUMO

The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.


Assuntos
Proteínas de Bactérias , Clorófitas , Cianobactérias , Evolução Molecular , Fotossíntese , Ficobilissomas , Proteínas de Plantas , Rodófitas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorófitas/enzimologia , Clorófitas/genética , Cianobactérias/enzimologia , Cianobactérias/genética , Ficobilissomas/genética , Ficobilissomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rodófitas/enzimologia , Rodófitas/genética
8.
Nat Commun ; 10(1): 4823, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645564

RESUMO

The common ancestor of red algae (Rhodophyta) has undergone massive genome reduction, whereby 25% of the gene inventory has been lost, followed by its split into the species-poor extremophilic Cyanidiophytina and the broadly distributed mesophilic red algae. Success of the mesophile radiation is surprising given their highly reduced gene inventory. To address this latter issue, we combine an improved genome assembly from the unicellular red alga Porphyridium purpureum with a diverse collection of other algal genomes to reconstruct ancient endosymbiotic gene transfers (EGTs) and gene duplications. We find EGTs associated with the core photosynthetic machinery that may have played important roles in plastid establishment. More significant are the extensive duplications and diversification of nuclear gene families encoding phycobilisome linker proteins that stabilize light-harvesting functions. We speculate that the origin of these complex families in mesophilic red algae may have contributed to their adaptation to a diversity of light environments.


Assuntos
Fotossíntese/genética , Ficobilissomas/genética , Porphyridium/genética , Evolução Molecular , Duplicação Gênica , Transferência Genética Horizontal , Genomas de Plastídeos , Genômica , Filogenia , Plastídeos/genética , Rodófitas/genética , Simbiose
9.
Biochim Biophys Acta Bioenerg ; 1860(2): 155-166, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414413

RESUMO

The phycobilisome (PBS) is a giant highly-structured pigment-protein antenna of cyanobacteria and red algae. PBS is composed of the phycobiliproteins and several linker polypeptides. The large core-membrane linker protein (LCM or ApcE) influences many features and functions of PBS and consists of several domains including the chromophorylated PB-domain. Being homologous to the phycobiliprotein α-subunits this domain includes a so-called PB-loop insertion whose functions are still unknown. We have created the photoautotrophic mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with lacking PB-loop. Using various spectral techniques we have demonstrated that this mutation does not destroy the PBS integrity and the internal PBS excitation energy transfer pathways. At the same time, the deletion of the PB-loop leads to the decrease of connectivity between the PBS and thylakoid membrane and to the compensatory increase of the relative photosystem II content. Mutation provokes the violation of the thylakoid membranes arrangement, the inability to perform state transitions, and diminishing of the OCP-dependent non-photochemical PBS quenching. In essence, even such a minute mutation of the PBS polypeptide component, like the PB-loop deletion, becomes important for the concerted function of the photosynthetic apparatus.


Assuntos
Ficobiliproteínas/fisiologia , Ficobilissomas/genética , Synechocystis/química , Proteínas de Bactérias/fisiologia , Cianobactérias , Transferência de Energia , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Rodófitas , Deleção de Sequência , Tilacoides/metabolismo
10.
Photosynth Res ; 138(1): 39-56, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29943359

RESUMO

Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.


Assuntos
Proteínas de Bactérias/genética , Ficobilissomas/metabolismo , Synechococcus/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação por Computador , Eletroforese em Gel de Poliacrilamida/métodos , Genoma Bacteriano , Luz , Espectrometria de Massas , Modelos Biológicos , Ficobilinas/metabolismo , Ficobilissomas/genética , Ficocianina/genética , Ficocianina/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Proteômica/métodos , Synechococcus/metabolismo , Zinco/química
11.
Biochim Biophys Acta Bioenerg ; 1859(4): 280-291, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391123

RESUMO

Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Ficobilissomas/genética , Deleção de Sequência , Synechocystis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transferência de Energia , Expressão Gênica , Engenharia Genética , Luz , Mutação , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Ficobilissomas/ultraestrutura , Ligação Proteica , Domínios Proteicos , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
12.
Photosynth Res ; 136(2): 183-198, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29090427

RESUMO

The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.


Assuntos
Clorofila/química , Clorofila/metabolismo , Synechocystis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/genética , Clorofila A , Diurona/química , Fluorescência , Luz , Medições Luminescentes , Ficobilissomas/genética , Ficobilissomas/metabolismo , Cianeto de Potássio/química , Espectrometria de Fluorescência , Synechocystis/genética , Synechocystis/metabolismo , Temperatura
13.
BMC Microbiol ; 17(1): 229, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216826

RESUMO

BACKGROUND: The 6S RNA is a global transcriptional riboregulator, which is exceptionally widespread among most bacterial phyla. While its role is well-characterized in some heterotrophic bacteria, we subjected a cyanobacterial homolog to functional analysis, thereby extending the scope of 6S RNA action to the special challenges of photoautotrophic lifestyles. RESULTS: Physiological characterization of a 6S RNA deletion strain (ΔssaA) demonstrates a delay in the recovery from nitrogen starvation. Significantly decelerated phycobilisome reassembly and glycogen degradation are accompanied with reduced photosynthetic activity compared to the wild type. Transcriptome profiling further revealed that predominantly genes encoding photosystem components, ATP synthase, phycobilisomes and ribosomal proteins were negatively affected in ΔssaA. In vivo pull-down studies of the RNA polymerase complex indicated that the presence of 6S RNA promotes the recruitment of the cyanobacterial housekeeping σ factor SigA, concurrently supporting dissociation of group 2 σ factors during recovery from nitrogen starvation. CONCLUSIONS: The combination of genetic, physiological and biochemical studies reveals the homologue of 6S RNA as an integral part of the cellular response of Synechocystis sp. PCC 6803 to changing nitrogen availability. According to these results, 6S RNA supports a rapid acclimation to changing nitrogen supply by accelerating the switch from group 2 σ factors SigB, SigC and SigE to SigA-dependent transcription. We therefore introduce the cyanobacterial 6S RNA as a novel candidate regulator of RNA polymerase sigma factor recruitment in Synechocystis sp. PCC 6803. Further studies on mechanistic features of the postulated interaction should shed additional light on the complexity of transcriptional regulation in cyanobacteria.


Assuntos
Aclimatação/genética , Regulação Bacteriana da Expressão Gênica , Nitrogênio/deficiência , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Perfilação da Expressão Gênica , Fotossíntese/genética , Ficobilissomas/genética , RNA Bacteriano/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Fator sigma/metabolismo , Transativadores/genética
14.
PLoS One ; 11(5): e0155757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196065

RESUMO

Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 µm to 20 µm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0-20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.


Assuntos
Cianobactérias/genética , Metagenoma , Prochlorococcus/genética , Synechococcus/genética , Evolução Biológica , Clorofila/química , Clorofila A , Ecossistema , Genoma Bacteriano , Oceano Índico , Funções Verossimilhança , Metagenômica , Ficobilissomas/genética , Filogenia , Água do Mar/microbiologia , Temperatura
15.
Dokl Biochem Biophys ; 471(1): 403-406, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28058690

RESUMO

In the large linker ArcE polypeptide of the phycobilisome (PBS) from the cyanobacterium Synechocystis sp. PCC 6803, the chromophore-containing 26-kDa domain was deleted with consequent disturbance of the main PBS functions. Phycobilisomes in mutant cells staying in contact with photosystem I cannot transfer energy to the photosystem II. Under the bright light conditions, the interaction of PBSs with the photoprotective orange carotenoid protein in the mutant was lost and the implementation of transition states 1 and 2 of the pigment apparatus was significantly reduced.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carotenoides/metabolismo , Luz , Mutação , Ficobilissomas/genética , Espectrometria de Fluorescência , Synechocystis
16.
FEMS Microbiol Lett ; 362(10)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25883111

RESUMO

The plant organelle chloroplast originated from the endosymbiosis of a cyanobacterial-like photosynthetic bacterium, and still retains its own genome derived from this ancestor. We have been focusing on a unicellular red alga, Cyanidioschyzon merolae, as a model photosynthetic eukaryote. In this study, we analyzed the transcriptional specificity of SIG4, which is one of four nuclear-encoded chloroplast RNA polymerase sigma factors in this alga. Accumulation of the SIG4 protein was observed in response to nitrogen depletion or high light conditions. By comparing the chloroplast transcriptomes under nitrogen depletion and SIG4-overexpressing conditions, we identified several candidate genes as SIG4 targets. Together with the results of chromatin immunoprecipitation analysis, the promoters of the psbA (encoding the D1 protein of the photosystem II reaction center) and ycf17 (encoding a protein of the early light-inducible protein family) genes were shown to be direct activation targets. The phycobilisome (PBS) CpcB protein was decreased by SIG4 overexpression, which suggests the negative involvement of SIG4 in PBS accumulation.


Assuntos
Proteínas de Cloroplastos/genética , Genes de Cloroplastos , Complexo de Proteína do Fotossistema II/genética , Fator sigma/genética , Transcriptoma , Sequência de Aminoácidos , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Luz , Análise em Microsséries , Ficobilissomas/genética , Filogenia , Regiões Promotoras Genéticas , Fator sigma/química
17.
PLoS One ; 9(8): e105952, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153076

RESUMO

Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-ß-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNR(L)) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNR(L) accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNR(L) and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.


Assuntos
Liases/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Synechocystis/metabolismo , Liases/genética , Ficobilissomas/genética , Ficocianina/genética , Synechocystis/genética
18.
Science ; 342(6162): 1104-7, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24288334

RESUMO

In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Ficobilissomas/química , Synechocystis/enzimologia , Reagentes de Ligações Cruzadas/química , Transferência de Energia , Fluorescência , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/isolamento & purificação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/isolamento & purificação , Ficobilissomas/genética , Ficobilissomas/isolamento & purificação , Conformação Proteica
19.
Appl Environ Microbiol ; 78(17): 6349-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706065

RESUMO

Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains of Synechocystis sp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO(2) conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.


Assuntos
Processos Autotróficos , Processos Fototróficos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Deleção de Sequência , Synechocystis/metabolismo , Dióxido de Carbono/metabolismo , Luz , Synechocystis/genética
20.
Biophys J ; 102(7): 1692-700, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22500770

RESUMO

In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting phycobilisomes (PBs) to protect the photosynthetic system against photodamage. This process requires the binding of the red active form of the Orange Carotenoid Protein (OCP(r)), which can effectively quench the excited state of one of the allophycocyanin bilins. Recently, an in vitro reconstitution system was developed using isolated OCP and isolated PBs from Synechocystis PCC 6803. Here we have used spectrally resolved picosecond fluorescence to study wild-type and two mutated PBs. The results demonstrate that the quenching for all types of PBs takes place on an allophycocyanin bilin emitting at 660 nm (APC(Q)(660)) with a molecular quenching rate that is faster than (1 ps)(-1). Moreover, it is concluded that both the mechanism and the site of quenching are the same in vitro and in vivo. Thus, utilization of the in vitro system should make it possible in the future to elucidate whether the quenching is caused by charge transfer between APC(Q)(660) and OCP or by excitation energy transfer from APC(Q)(660) to the S(1) state of the carotenoid--a distinction that is very hard, if not impossible, to make in vivo.


Assuntos
Proteínas de Bactérias/química , Proteínas Mutantes/química , Mutação , Ficobilissomas/química , Espectrometria de Fluorescência/métodos , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cinética , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Ficobilissomas/genética , Ficobilissomas/isolamento & purificação , Ficobilissomas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...