Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257.746
Filtrar
1.
Sci Rep ; 14(1): 12774, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834652

RESUMO

The diversity of marine cyanobacteria has been extensively studied due to their vital roles in ocean primary production. However, little is understood about the diversity of cyanobacterial species involved in symbiotic relationships. In this study, we successfully sequenced the complete genome of a cyanobacterium in symbiosis with Citharistes regius, a dinoflagellate species thriving in the open ocean. A phylogenomic analysis revealed that the cyanobacterium (CregCyn) belongs to the marine picocyanobacterial lineage, akin to another cyanobacterial symbiont (OmCyn) of a different dinoflagellate closely related to Citharistes. Nevertheless, these two symbionts are representing distinct lineages, suggesting independent origins of their symbiotic lifestyles. Despite the distinct origins, the genome analyses of CregCyn revealed shared characteristics with OmCyn, including an obligate symbiotic relationship with the host dinoflagellates and a degree of genome reduction. In contrast, a detailed analysis of genome subregions unveiled that the CregCyn genome carries genomic islands that are not found in the OmCyn genome. The presence of the genomic islands implies that exogenous genes have been integrated into the CregCyn genome at some point in its evolution. This study contributes to our understanding of the complex history of the symbiosis between dinoflagellates and cyanobacteria, as well as the genomic diversity of marine picocyanobacteria.


Assuntos
Cianobactérias , Dinoflagellida , Genoma Bacteriano , Filogenia , Simbiose , Dinoflagellida/genética , Dinoflagellida/fisiologia , Simbiose/genética , Cianobactérias/genética , Cianobactérias/classificação , Evolução Molecular
2.
Arch Virol ; 169(7): 134, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834736

RESUMO

Anthrax is an acute infectious zoonotic disease caused by Bacillus anthracis, a bacterium that is considered a potential biological warfare agent. Bacillus bacteriophages shape the composition and evolution of bacterial communities in nature and therefore have important roles in the ecosystem community. B. anthracis phages are not only used in etiological diagnostics but also have promising prospects in clinical therapeutics or for disinfection in anthrax outbreaks. In this study, two temperate B. anthracis phages, vB_BanS_A16R1 (A16R1) and vB_BanS_A16R4 (A16R4), were isolated and showed siphovirus-like morphological characteristics. Genome sequencing showed that the genomes of phages A16R1 and A16R4 are 36,569 bp and 40,059 bp in length, respectively. A16R1 belongs to the genus Wbetavirus, while A16R4 belongs to the genus Hubeivirus and is the first phage of that genus found to lyse B. anthracis. Because these two phages can comparatively specifically lyse B. anthracis, they could be used as alternative diagnostic tools for identification of B. anthracis infections.


Assuntos
Fagos Bacilares , Bacillus anthracis , Genoma Viral , Bacillus anthracis/virologia , Genoma Viral/genética , Fagos Bacilares/isolamento & purificação , Fagos Bacilares/genética , Fagos Bacilares/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/classificação , Filogenia
3.
Sci Rep ; 14(1): 12861, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834792

RESUMO

The mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement. Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size. Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae. We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Hemípteros/genética , Hemípteros/classificação , RNA de Transferência/genética , RNA Ribossômico/genética
4.
Food Res Int ; 188: 114463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823831

RESUMO

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Assuntos
Biofilmes , Microbiologia de Alimentos , Lipase , Leite , Pasteurização , Pseudomonas , Pseudomonas/metabolismo , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/crescimento & desenvolvimento , Leite/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Lipase/metabolismo , China , Filogenia , Peptídeo Hidrolases/metabolismo , RNA Ribossômico 16S/genética , Contaminação de Alimentos/análise , Temperatura
5.
J Helminthol ; 98: e47, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828707

RESUMO

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Assuntos
Estágios do Ciclo de Vida , Filogenia , Schistosomatidae , Animais , Schistosomatidae/genética , Schistosomatidae/classificação , Schistosomatidae/isolamento & purificação , Schistosomatidae/crescimento & desenvolvimento , Schistosomatidae/anatomia & histologia , Chile , Argentina , Aves/parasitologia , Doenças das Aves/parasitologia , RNA Ribossômico 28S/genética , Caramujos/parasitologia , América do Sul , Complexo IV da Cadeia de Transporte de Elétrons/genética
6.
Planta ; 260(1): 14, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829418

RESUMO

MAIN CONCLUSION: Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.


Assuntos
Cycadopsida , Genoma Mitocondrial , Genoma de Planta , Cycadopsida/genética , Genoma de Planta/genética , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Evolução Molecular , Filogenia , Evolução Biológica
7.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829426

RESUMO

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Assuntos
Ascomicetos , Lactuca , Filogenia , Doenças das Plantas , Lactuca/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiose , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/isolamento & purificação , Microbiologia do Solo , Trichoderma/genética , Trichoderma/isolamento & purificação , Trichoderma/fisiologia , Trichoderma/metabolismo
8.
Parasitol Res ; 123(6): 231, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829429

RESUMO

Cryptosporidium spp. are protozoa commonly found in domestic and wild animals. Limited information is available on Cryptosporidium in deer worldwide. In this study, 201 fecal samples were collected from Alpine musk deer on three farms in Gansu Province, China. Detection and subtyping of Cryptosporidium were performed by PCR and sequence analysis of the SSU rRNA and gp60 genes. The prevalence of Cryptosporidium infection in Alpine musk deer was 3.9% (8/201), with infection rates of 1.0% (1/100), 2.8% (1/36), and 9.2% (6/65) in three different farms. All positive samples for Cryptosporidium were from adult deer. Two Cryptosporidium species were identified, including C. parvum (n = 2) and C. xiaoi (n = 6). The C. parvum isolates were subtyped as IIdA15G1, while the C. xiaoi isolates were subtyped as XXIIIa (n = 2) and XXIIIg (n = 4). The IIdA15G1 subtype of C. parvum was found for the first time in deer. These results provide important insights into the identity and human infectious potential of Cryptosporidium in farmed Alpine musk deer.


Assuntos
Criptosporidiose , Cryptosporidium , Cervos , Fezes , Animais , Cervos/parasitologia , Criptosporidiose/parasitologia , Criptosporidiose/epidemiologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , China/epidemiologia , Fezes/parasitologia , Prevalência , DNA de Protozoário/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Genótipo , DNA Ribossômico/genética , DNA Ribossômico/química
9.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829455

RESUMO

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Assuntos
Genoma Bacteriano , Filogenia , Fatores de Virulência , Yersinia , Yersinia/genética , Yersinia/classificação , Yersinia/patogenicidade , Yersinia/isolamento & purificação , Fatores de Virulência/genética , Brasil , Yersiniose/microbiologia , Yersiniose/veterinária , Humanos , Genômica , Prófagos/genética , Plasmídeos/genética , Tipagem de Sequências Multilocus , Virulência/genética
10.
Arch Virol ; 169(6): 132, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822903

RESUMO

Orpheoviruses, cedratviruses, and pithoviruses are large DNA viruses that cluster together taxonomically within the order Pimascovirales of the phylum Nucleocytoviricota. However, they were not classified previously by the International Committee on Taxonomy of Viruses (ICTV). Here, we present a comprehensive analysis of the gene content, morphology, and phylogenomics of these viruses, providing data that underpinned the recent proposal to establish new taxa for their initial classification. The new taxonomy, which has now been ratified by the ICTV, includes the family Orpheoviridae and genus Alphaorpheovirus, the family Pithoviridae and genus Alphapithovirus, and the family Cedratviridae and genus Alphacedratvirus, aiming to formally catalogue the isolates covered in this study. Additionally, as per the newly adopted rules, we applied standardized binomial names for the virus species created to classify isolates with complete genome sequences available in public databases at the time of the proposal. The specific epithet of each virus species was chosen as a reference to the location where the exemplar virus was isolated.


Assuntos
Vírus de DNA , Genoma Viral , Filogenia , Genoma Viral/genética , Vírus de DNA/genética , Vírus de DNA/classificação , DNA Viral/genética
11.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840042

RESUMO

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Assuntos
Broussonetia , Metalotioneína , Metais Pesados , Filogenia , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/química , Metais Pesados/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estresse Fisiológico , Sequência de Aminoácidos , Ligação Proteica
12.
Glob Chang Biol ; 30(6): e17344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837566

RESUMO

Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.


Assuntos
Quirópteros , Mudança Climática , DNA Mitocondrial , Animais , Quirópteros/fisiologia , Quirópteros/genética , África Austral , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Filogenia , Especiação Genética , Filogeografia , Distribuição Animal
13.
Physiol Plant ; 176(3): e14363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837786

RESUMO

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Assuntos
Agaricales , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Agaricales/genética , Agaricales/classificação , Evolução Molecular , Genoma Fúngico/genética
14.
Food Microbiol ; 122: 104532, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839238

RESUMO

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Assuntos
Genoma Fúngico , Família Multigênica , Micotoxinas , Penicillium , Filogenia , Metabolismo Secundário , Penicillium/genética , Penicillium/metabolismo , Micotoxinas/metabolismo , Micotoxinas/genética , Contaminação de Alimentos/análise , Patulina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nozes/microbiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Microbiologia de Alimentos , Corylus/microbiologia , Compostos Heterocíclicos de 4 ou mais Anéis , Indóis , Piperazinas
15.
Microbes Environ ; 39(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839365

RESUMO

Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.


Assuntos
Antibacterianos , Genoma Bacteriano , Genômica , Shigella flexneri , Águas Residuárias , Shigella flexneri/genética , Shigella flexneri/isolamento & purificação , Shigella flexneri/classificação , Shigella flexneri/efeitos dos fármacos , Genoma Bacteriano/genética , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Filogenia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla/genética , Virulência/genética
16.
Microbes Environ ; 39(5)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839370

RESUMO

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Assuntos
Bactérias , Fontes Hidrotermais , Ferro , Consórcios Microbianos , RNA Ribossômico 16S , Água do Mar , Corrosão , Ferro/metabolismo , Ferro/química , Água do Mar/microbiologia , Água do Mar/química , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Filogenia
17.
Syst Parasitol ; 101(4): 44, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839661

RESUMO

Species of Diolcogaster parasitize Lepidoptera pests of commercial plants. The diversity of this genus is high, but few species of Diolcogaster have been described. The description of a new Diolcogaster species provides information for the biological control using this insect. This study presents the description and key notes on the biology of a new Diolcogaster parasitoid wasp. This species was reared from a caterpillar of Hypercompe brasiliensis collected after feeding on a Gloxinia perennis plant important to floriculture. Two complementary identification analyzes were performed on Diolcogaster adult bodies. The first was the analyses of its external morphology and the second its molecular analysis (mitochondrial DNA). The morphological analysis defined the insect as a new species of Diolcogaster, named Diolcogaster joanesi sp. nov. A maximum-likelihood (ML) analysis partially confirmed the morphological analysis, placing D. joanesi within a cluster including a previously identified species (Diolcogaster choi) and seven other morphospecies. The proximity of D. joanesi to D. choi is discussed and an updated key for all New World species of the xanthaspis group is provided. Twenty-eight adult wasps were obtained (22 females and six males) out of 50 cocoons which larvae emerged from the caterpillar host. The findings contribute to the broader understanding of Diolcogaster in the Neotropics and its potential for the biological control of lepidopteran defoliators.


Assuntos
Controle Biológico de Vetores , Especificidade da Espécie , Vespas , Animais , Brasil , Vespas/classificação , Vespas/anatomia & histologia , Mariposas/parasitologia , Lepidópteros/parasitologia , Filogenia , Larva , Feminino
18.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825655

RESUMO

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Assuntos
Bacillus , Biodegradação Ambiental , Carbonato de Cálcio , RNA Ribossômico 16S , Areia , Microbiologia do Solo , Ureia , Ureia/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Areia/microbiologia , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Temperatura , Filogenia , Precipitação Química
19.
BMC Genomics ; 25(1): 552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825700

RESUMO

BACKGROUND: The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS: The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS: This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Composição de Bases , Anotação de Sequência Molecular
20.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833289

RESUMO

Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.


Assuntos
Genoma Viral , Doenças das Plantas , Fagos de Pseudomonas , Pseudomonas syringae , Pseudomonas syringae/virologia , Pseudomonas syringae/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Fagos de Pseudomonas/genética , Filogenia , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...