Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 176: 325-331, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582218

RESUMO

Plant photobodies are the membrane-less organelles (MLOs) that can be generated by protein-protein interactions between active form of phytochrome B (phyB) and phytochrome-interacting factors (PIFs). These organelles regulate plant photomorphogenesis. In this study, we developed two chimeric proteins with fluorescent proteins, phyB fused to EGFP and PIF6 fused to mCherry, and investigated their exogenous expression in mammalian cells by confocal fluorescence microscopy. Results showed that irradiation with diffused 630-nm light induced formation and subsequent increase in sizes of the MLOs. The assembly and disassembly of the photo-inducible MLOs in the mammalian cell cytoplasm obeyed the laws inherent in the concentration-dependent phase separation of biopolymers. The sizes of MLOs formed from phyB and PIF6 in mammalian cells corresponded to the sizes of the so-called "early" photobodies in plant cells. These results suggested that the first step for the formation of plant photobodies might be based on the light-dependent liquid-liquid phase separation of PIFs and other proteins that can specifically interact with the active form of phyB. The developed chimeric proteins in principle can be used to control the assembly and disassembly of photo-inducible MLOs, and thereby to regulate various intracellular processes in mammalian cells.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fitocromo B , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células HEK293 , Humanos , Fitocromo B/biossíntese , Fitocromo B/genética
2.
ACS Synth Biol ; 7(2): 706-717, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29301067

RESUMO

Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.


Assuntos
Proteínas de Arabidopsis , Proteínas de Bactérias , Ferredoxinas , Optogenética , Fitocromo B , Sulfito Redutase (Ferredoxina) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ferredoxinas/biossíntese , Ferredoxinas/genética , Células HEK293 , Humanos , Fitocromo B/biossíntese , Fitocromo B/genética , Sulfito Redutase (Ferredoxina)/biossíntese , Sulfito Redutase (Ferredoxina)/genética , Synechococcus/genética , Synechococcus/metabolismo
3.
Mol Biol Cell ; 24(15): 2419-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761071

RESUMO

Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.


Assuntos
Optogenética , Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Núcleo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Luz , Fissão Nuclear , Organelas/metabolismo , Fitocromo B/biossíntese , Fitocromo B/genética , Regiões Promotoras Genéticas , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
4.
Methods ; 58(4): 385-91, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22922268

RESUMO

A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos da radiação , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Criptocromos/biossíntese , Criptocromos/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Galactoquinase/genética , Genes Reporter , Ficobilinas/farmacologia , Ficobilinas/efeitos da radiação , Ficocianina/farmacologia , Ficocianina/efeitos da radiação , Fitocromo B/biossíntese , Fitocromo B/genética , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...