Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 72: 54-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23510577

RESUMO

Phloridzin is the predominant polyphenol in apple (Malus × domestica Borkh.) where it accumulates to high concentrations in many tissues including the leaves, bark, roots and fruit. Despite its relative abundance in apple the biosynthesis of phloridzin and other related dihydrochalcones remains only partially understood. The key unidentified enzyme in phloridzin biosynthesis is a putative carbon double bond reductase which is thought to act on p-coumaroyl-CoA to produce the dihydro-p-coumaroyl-CoA precursor. A functional screen of six apple enoyl reductase-like (ENRL) genes was carried out using transient infiltration into tobacco and gene silencing by RNA interference (RNAi) in order to determine carbon double bond reductase activity and contribution to foliar phloridzin concentrations. The ENRL-3 gene caused a significant increase in phloridzin concentration when infiltrated into tobacco leaves whilst a second protein ENRL-5, with over 98% amino acid sequence similarity to ENRL-3, showed p-coumaroyl-CoA reductase activity in enzyme assays. Finally, an RNAi study showed that reducing the transcript levels of ENRL-3 in transgenic 'Royal Gala' led to a 66% decrease in the concentration of dihydrochalcones in the leaves in the one available silenced line. Overall these results suggest that ENRL-3, and its close homolog ENRL-5, may contribute to the biosynthesis of phloridzin in apple.


Assuntos
Malus/enzimologia , Malus/metabolismo , Oxirredutases/metabolismo , Florizina/biossíntese , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/genética , Oxirredutases/genética , Florizina/genética , Proteínas de Plantas/genética , Raízes de Plantas , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
2.
J Agric Food Chem ; 56(13): 5352-8, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18553996

RESUMO

The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond ( Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0 A and belong to the tetragonal space group P4(1)22, with unit cell parameters of a = b = 150.912 A, c = 165.248 A. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.


Assuntos
Peptídeos/química , Peptídeos/isolamento & purificação , Florizina/análogos & derivados , Prunus/química , Prunus/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Antígenos de Plantas/isolamento & purificação , Cristalização , Cristalografia por Raios X , Hipersensibilidade Alimentar , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/imunologia , Florizina/química , Florizina/genética , Florizina/imunologia , Florizina/isolamento & purificação , Prunus/genética , Alinhamento de Sequência
3.
Proteomics ; 6(14): 4147-54, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16800032

RESUMO

Seed dormancy is regulated by complex networks in order to optimize the timing of germination. However, the biochemical basis of the regulation of seed dormancy is still poorly understood. Many temperate timber species, which are of ecological and/or economic interest, are deeply dormant in seeds, such as Prunus campanulata. Freshly harvested seeds require warm plus cold stratification to break dormancy before they can begin to germinate. According to the results of germination, both warm and cold stratifications are the critical influences for breaking seed dormancy. Significant variations in seed proteins were observed by 2-DE before and after the breaking of seed dormancy. Among the 320, 455, and 491 reproducibly detected spots on the cotyledons, embryos, and testae, respectively, 71 dramatic changes in abundances were observed following warm and/or cold stratification. Among these protein spots, dehydrin, prunin 1 precursor, prunin 2 precursor, and prunin 2 were identified by MS and sequence comparison. The implications of protein changes in relation to the breaking of seed dormancy and germination are discussed. This is the first report of a proteomic analysis of dormancy breaking in woody plant seeds.


Assuntos
Germinação , Proteínas de Plantas/análise , Prunus/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Dados de Sequência Molecular , Florizina/análogos & derivados , Florizina/análise , Florizina/genética , Florizina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...