Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.008
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928239

RESUMO

Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular mechanisms between minoxidil (MNX) and adenosine, gene expression changes in dermal papilla cells were examined. The androgen receptor (AR) pathway was identified as a candidate target of adenosine for hair growth, and the anti-androgenic activity of adenosine was examined in vitro. In addition, ex vivo examination of human hair follicle organ cultures revealed that adenosine potently elongated the anagen stage. According to the severity of alopecia, the ratio of the two peaks (terminal hair area/vellus hair area) decreased continuously. We further investigated the adenosine hair growth promoting effect in vivo to examine the hair thickness growth effects of topical 5% MNX and the adenosine complex (0.75% adenosine, 1% penthenol, and 2% niacinamide; APN) in vivo. After 4 months of administration, both the MNX and APN group showed significant increases in hair density (MNX + 5.01% (p < 0.01), APN + 6.20% (p < 0.001)) and thickness (MNX + 5.14% (p < 0.001), APN + 10.32% (p < 0.001)). The inhibition of AR signaling via adenosine could have contributed to hair thickness growth. We suggest that the anti-androgenic effect of adenosine, along with the evaluation of hair thickness distribution, could help us to understand hair physiology and to investigate new approaches for drug development.


Assuntos
Adenosina , Alopecia , Folículo Piloso , Cabelo , Minoxidil , Receptores Androgênicos , Transdução de Sinais , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Alopecia/patologia , Humanos , Masculino , Receptores Androgênicos/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Minoxidil/farmacologia , Feminino , Animais , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo
2.
BMC Genomics ; 25(1): 574, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849762

RESUMO

BACKGROUND: The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS: A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-ß, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS: Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.


Assuntos
Redes Reguladoras de Genes , Folículo Piloso , MicroRNAs , RNA Circular , RNA Longo não Codificante , RNA Mensageiro , Animais , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ovinos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Pele/metabolismo , Transcriptoma , Feto/metabolismo
3.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891117

RESUMO

Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Glutationa Peroxidase , Folículo Piloso , Via de Sinalização Wnt , , Animais , Fator 5 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Ovinos , Lã/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Edição de Genes , Hidrocortisona/metabolismo , Proliferação de Células , Sistemas CRISPR-Cas/genética
4.
J Cell Mol Med ; 28(12): e18486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923380

RESUMO

Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.


Assuntos
Antioxidantes , Folículo Piloso , Estresse Oxidativo , Transdução de Sinais , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Cabelo/efeitos dos fármacos , Alopecia/metabolismo , Alopecia/tratamento farmacológico , Produtos Biológicos/farmacologia
5.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792149

RESUMO

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Assuntos
Alopecia , Cabelo , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alopecia/tratamento farmacológico , Alopecia/prevenção & controle , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Animais , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos
6.
BMC Genomics ; 25(1): 498, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773419

RESUMO

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Assuntos
Cabelo , Isoformas de Proteínas , RNA-Seq , Pele , Transcriptoma , Animais , Bovinos/genética , Pele/metabolismo , Cabelo/metabolismo , Cabelo/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Processamento Alternativo , Análise de Sequência de RNA
7.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775976

RESUMO

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Assuntos
Alopecia , Folículo Piloso , Cabelo , Fatores de Transcrição , Animais , Masculino , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Humanos , Alopecia/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/administração & dosagem , Camundongos Nus , Camundongos Pelados , Modelos Animais de Doenças , Glucocorticoides/farmacologia
9.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790256

RESUMO

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Assuntos
Biologia Computacional , Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Biologia Computacional/métodos , Proteínas Filagrinas , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Minoxidil/farmacologia , Perfilação da Expressão Gênica/métodos
10.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738816

RESUMO

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Assuntos
Cabelo , Via de Sinalização Wnt , Animais , Camundongos , Cabelo/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/química , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Biotransformação , Fermentação , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento
11.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739468

RESUMO

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Assuntos
Alopecia , Folículo Piloso , Indóis , Polímeros , Quercetina , Espécies Reativas de Oxigênio , Alopecia/tratamento farmacológico , Alopecia/patologia , Quercetina/farmacologia , Quercetina/administração & dosagem , Quercetina/química , Animais , Indóis/química , Indóis/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Polímeros/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Humanos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
12.
Adv Sci (Weinh) ; 11(20): e2306703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561967

RESUMO

The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.


Assuntos
Folículo Piloso , Transcriptoma , Animais , Suínos/genética , Suínos/embriologia , Folículo Piloso/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/crescimento & desenvolvimento , Transcriptoma/genética , Análise de Célula Única/métodos , Pele/metabolismo , Pele/embriologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos
13.
In Vivo ; 38(3): 1199-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688645

RESUMO

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Assuntos
Folículo Piloso , Cabelo , Homocisteína , Metionina , Animais , Metionina/deficiência , Metionina/metabolismo , Metionina/administração & dosagem , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Homocisteína/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Alopecia/metabolismo , Alopecia/etiologia , Alopecia/patologia , Modelos Animais de Doenças , Dieta , Queratinócitos/metabolismo
14.
Genomics ; 116(3): 110844, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608737

RESUMO

The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.


Assuntos
Proliferação de Células , Cabras , Folículo Piloso , Melatonina , Proteínas Wnt , Animais , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Cabras/genética , Cabras/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células Cultivadas
15.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674344

RESUMO

This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFß mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Folículo Piloso , Animais , Coelhos , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Proliferação de Células/genética , Processamento Alternativo
16.
J Med Food ; 27(5): 449-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421731

RESUMO

Although hair loss contributes to various social and economic, research methods for material development are currently limited. In this study, we established a research model for developing materials for hair growth through the regulation of ß-catenin. We confirmed that 100 nM tegatrabetan (TG), a ß-catenin inhibitor, decreased the proliferation of human hair follicle dermal papilla cells (HFDPCs) at 72 h. In addition, TG-induced apoptosis suppressed the phosphorylation of GSK-3ß and Akt, translocation of ß-catenin from the cytosol to the nucleus, and the expression of cyclin D1. Interestingly, TG significantly increased the G2/M arrest in HFDPCs. Subcutaneous injection of TG suppressed hair growth and the number of hair follicles in C57BL/6 mice. Moreover, TG inhibited the expression of cyclin D1, ß-catenin, keratin 14, and Ki67. These results suggest that TG-induced inhibition of hair growth can be a promising model for developing new materials for enhancing ß-catenin-mediated hair growth.


Assuntos
Proliferação de Células , Ciclina D1 , Glicogênio Sintase Quinase 3 beta , Folículo Piloso , Cabelo , Camundongos Endogâmicos C57BL , Transdução de Sinais , beta Catenina , beta Catenina/metabolismo , Animais , Humanos , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Ciclina D1/metabolismo , Ciclina D1/genética , Apoptose/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação
17.
J Invest Dermatol ; 144(6): 1223-1237.e10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38159590

RESUMO

The Wnt/ß-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/ß-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/ß-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial ß-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/ß-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high ß-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of ß-catenin, suggesting that the level of epithelial Wnt/ß-catenin signaling activity may contribute to the choice between skin appendage identities.


Assuntos
Diferenciação Celular , Glândulas Mamárias Animais , Morfogênese , Via de Sinalização Wnt , beta Catenina , Animais , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Feminino , Via de Sinalização Wnt/fisiologia , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
18.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051393

RESUMO

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.


Assuntos
Membrana Basal , Colágeno Tipo IV , Matriz Extracelular , Animais , Camundongos , Membrana Basal/crescimento & desenvolvimento , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Corantes Fluorescentes , Folículo Piloso/crescimento & desenvolvimento , Células-Tronco
19.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552830

RESUMO

Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.


Assuntos
Folículo Piloso , Feminino , Humanos , Masculino , Alopecia/terapia , Alopecia/metabolismo , Células Cultivadas , Derme/citologia , Fibroblastos , Folículo Piloso/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Nanopartículas , Vesículas Extracelulares
20.
Biomed Pharmacother ; 150: 112996, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462338

RESUMO

CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth. CXCL12 was highly expressed in dermal fibroblasts (DFs) and its level was elevated throughout the catagen and telogen phases of the hair cycle. CXCR4 is expressed in the dermal papilla (DP) and outer root sheath (ORS). In hair organ culture, hair loss was induced by recombinant CXCL12 therapy, which delayed the telogen-to-anagen transition and decreased hair length. In contrast, the suppression of CXCL12 using a neutralizing antibody and siRNA triggered the telogen-to-anagen transition and increased hair length in hair organ culture. Neutralization of CXCR7, one of the two receptors for CXCL12, only slightly affected hair growth. However, inhibition of CXCR4, the other receptor for CXCL12, increased hair growth to a considerable extent. In addition, in hair organ culture, the conditioned medium from DFs with CXCL12 siRNA considerably increased the hair length and induced proliferation of DP and ORS cells. CXCL12, through CXCR4 activation, increased STAT3 and STAT5 phosphorylation in DP and ORS cells. In contrast, blocking CXCL12 and CXCR4 decreased the phosphorylation of STAT3 and STAT5. In summary, these findings suggest that CXCL12 inhibits hair growth via the CXCR4/STAT signaling pathway and that CXCL12/CXCR4 pathway inhibitors are a promising treatment option for hair growth.


Assuntos
Quimiocina CXCL12 , Cabelo , Receptores CXCR4 , Alopecia/metabolismo , Quimiocina CXCL12/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , RNA Interferente Pequeno/metabolismo , Receptores CXCR4/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...