Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 83(5): 1585-1591, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32267694

RESUMO

Irijimasides A-E (1-5), a series of new 14-membered macrolide glycosides, were isolated from a marine cyanobacterium collected in Okinawa. The gross structures of 1-5 were established by spectroscopic analysis, including 2D NMR, while absolute stereostructures were determined based on NOESY spectra, chemical derivatization, and ECD data. All five macrolides suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity in mouse RAW264 macrophage cells, indicating that these compounds inhibit osteoclast formation.


Assuntos
Cianobactérias/química , Glicosídeos/química , Macrolídeos/química , Osteoclastos/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Animais , Camundongos , Estrutura Molecular , Ligante RANK/química , Ligante RANK/metabolismo , Fosfatase Ácida Resistente a Tartarato/química
2.
PLoS One ; 15(3): e0230052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214327

RESUMO

Biallelic mutations in ACP5, encoding tartrate-resistant acid phosphatase (TRACP), have recently been identified to cause the inherited immuno-osseous disorder, spondyloenchondrodysplasia (SPENCD). This study was undertaken to characterize the eight reported missense mutations in ACP5 associated with SPENCD on TRACP expression. ACP5 mutant genes were synthesized, transfected into human embryonic kidney (HEK-293) cells and stably expressing cell lines were established. TRACP expression was assessed by cytochemical and immuno-cytochemical staining with a panel of monoclonal antibodies. Analysis of wild (WT) type and eight mutant stable cell lines indicated that all mutants lacked stainable enzyme activity. All ACP5 mutant constructs were translated into intact proteins by HEK-293 cells. The mutant TRACP proteins displayed variable immune reactivity patterns, and all drastically reduced enzymatic activity, revealing that there is no gross inhibition of TRACP biosynthesis by the mutations. But they likely interfere with folding thereby impairing enzyme function. TRACP exists as two isoforms. TRACP 5a is a less active monomeric enzyme (35kD), with the intact loop peptide and TRACP 5b is proteolytically cleaved highly active enzyme encompassing two subunits (23 kD and 16 kD) held together by disulfide bonds. None of the mutant proteins were proteolytically processed into isoform 5b intracellularly, and only three mutants were secreted in significant amounts into the culture medium as intact isoform 5a-like proteins. Analysis of antibody reactivity patterns revealed that T89I and M264K mutant proteins retained some native conformation, whereas all others were in "denatured" or "unfolded" forms. Western blot analysis with intracellular and secreted TRACP proteins also revealed similar observations indicating that mutant T89I is amply secreted as inactive protein. All mutant proteins were attacked by Endo-H sensitive glycans and none could be activated by proteolytic cleavage in vitro. In conclusion, determining the structure-function relationship of the SPENCD mutations in TRACP will expand our understanding of basic mechanisms underlying immune responsiveness and its involvement in dysregulated bone metabolism.


Assuntos
Doenças Autoimunes/patologia , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/patologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Substituição de Aminoácidos , Doenças Autoimunes/enzimologia , Doenças Autoimunes/genética , Glicosilação , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/genética , Proteólise , Fosfatase Ácida Resistente a Tartarato/química , Fosfatase Ácida Resistente a Tartarato/genética
3.
ACS Appl Mater Interfaces ; 12(14): 16058-16075, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182418

RESUMO

Recent studies show that biomaterials are capable of regulating immune responses to induce a favorable osteogenic microenvironment and promote osteogenesis and angiogenesis. In this study, we investigated the effects of zinc silicate/nanohydroxyapatite/collagen (ZS/HA/Col) scaffolds on bone regeneration and angiogenesis and explored the related mechanism. We demonstrate that 10ZS/HA/Col scaffolds significantly enhanced bone regeneration and angiogenesis in vivo compared with HA/Col scaffolds. ZS/HA/Col scaffolds increased tartrate-resistant acid phosphatase (TRAP)-positive cells, nestin-positive bone marrow stromal cells (BMSCs) and CD31-positive neovessels, and expression of osteogenesis (Bmp-2 and Osterix) and angiogenesis-related (Vegf-α and Cd31) genes increased in nascent bone. ZS/HA/Col scaffolds with 10 wt % ZS activated the p38 signaling pathway in monocytes. The monocytes subsequently differentiated into TRAP+ cells and expressed higher levels of the cytokines SDF-1, TGF-ß1, VEGF-α, and PDGF-BB, which recruited BMSCs and endothelial cells (ECs) to the defect areas. Blocking the p38 pathway in monocytes reduced TRAP+ differentiation and cytokine secretion and resulted in a decrease in BMSC and EC homing and angiogenesis. Overall, these findings demonstrate that 10ZS/HA/Col scaffolds modulate monocytes and, thereby, create a favorable osteogenic microenvironment that promotes BMSC migration and differentiation and vessel formation by activating the p38 signaling pathway.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Colágeno/química , Durapatita/química , Nanopartículas/química , Silicatos/química , Compostos de Zinco/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Quimiocina CXCL12/genética , Colágeno/síntese química , Colágeno/farmacologia , Durapatita/síntese química , Durapatita/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/imunologia , Nestina/genética , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia , Impressão Tridimensional , Silicatos/síntese química , Silicatos/farmacologia , Fosfatase Ácida Resistente a Tartarato/química , Alicerces Teciduais/química , Compostos de Zinco/síntese química , Compostos de Zinco/farmacologia
4.
Exp Parasitol ; 205: 107748, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442453

RESUMO

Trypanosoma cruzi (the causative agent of Chagas disease) presents a complex life cycle that involves adaptations in vertebrate and invertebrate hosts. As a protozoan parasite of hematophagous insects and mammalian hosts, T. cruzi is exposed to reactive oxygen species (ROS). To investigate the functionality of T. cruzi tartrate-resistant acid phosphatase type 5 (TcACP5), we cloned, superexpressed and purified the enzyme. Purified TcACP5 exhibited a Vmax and apparent Km for pNPP hydrolysis of 7.7 ±â€¯0.2 nmol pNP × µg-1 × h-1 and 169.3 ±â€¯22.6 µM, respectively. The pH dependence was characterized by sharp maximal activity at pH 5.0, and inhibition assays demonstrated its sensitivity to acid phosphatase inhibitors. Similar activities were obtained with saturating concentrations of P-Ser and P-Thr as substrates. The enzyme metabolizes hydrogen peroxide (H2O2) in vitro, and parasites superexpressing this enzyme were more resistant to oxidative stress promoted by H2O2. Taken together, these results suggest that TcACP5 plays a central role in phosphoryl transfer and redox reactions.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/fisiologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Confocal , Oxirredução , Especificidade por Substrato , Fosfatase Ácida Resistente a Tartarato/antagonistas & inibidores , Fosfatase Ácida Resistente a Tartarato/química , Transfecção , Trypanosoma cruzi/efeitos dos fármacos
5.
Biomed Res Int ; 2019: 8650846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058194

RESUMO

Prostate cancer is a serious disease that can invade bone tissues. These bone metastases can greatly decrease a patient's quality of life, pose a financial burden, and even result in death. In recent years, tumor cell-secreted microvesicles have been identified and proposed to be a key factor in cell interaction. However, the impact of cancer-derived exosomes on bone cells remains unclear. Herein, we isolated exosomes from prostate cancer cell line PC-3 and investigated their effects on human osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) staining. The potential mechanism was evaluated by qRT-PCR, western blotting, and microRNA transfection experiments. The results showed that PC-3-derived exosomes dramatically inhibited osteoclast differentiation. Marker genes of mature osteoclasts, including CTSK, NFATc1, ACP5, and miR-214, were all downregulated in the presence of PC-3 exosomes. Furthermore, transfection experiments showed that miR-214 downregulation severely impaired osteoclast differentiation, whereas overexpression of miR-214 promoted differentiation. Furthermore, we demonstrated that PC-3-derived exosomes block the NF-κB signaling pathway. Our study suggested that PC-3-derived exosomes inhibit osteoclast differentiation by downregulating miR-214 and blocking the NF-κB signaling pathway. Therefore, elevating miR-214 levels in the bone metastatic site may attenuate the invasion of prostate cancer.


Assuntos
Neoplasias Ósseas/genética , MicroRNAs/genética , Osteogênese/genética , Neoplasias da Próstata/genética , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Catepsina K/genética , Diferenciação Celular/genética , Exossomos/metabolismo , Exossomos/patologia , Regulação Neoplásica da Expressão Gênica/genética , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Fatores de Transcrição NFATC/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Osteoclastos/patologia , Células PC-3 , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Fosfatase Ácida Resistente a Tartarato/química , Fosfatase Ácida Resistente a Tartarato/genética
6.
Anticancer Agents Med Chem ; 18(8): 1082-1090, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29637867

RESUMO

BACKGROUND: Tartrate-resistant acid phosphatase 5 (ACP5) is an evolutionarily conserved and multifunctional protein that is involved in generations of reactive oxygen species, normal bone development, osteoblast regulation and macrophage function, affecting a series of pathways, as well as reflecting bone resorption and osteoclast activity. METHODS: Literature searches, systematic reviews and assessments about the structure, distribution, regulation and novel functions of ACP5 were performed in this review from PubMed and Medline databases. RESULTS: Studies demonstrate that RANKL can increase the expression of ACP5 through NFATc1 and c-Fos to accelerate osteoclastogenesis, which also can be regulated by many regulators. Based on the aforementioned information, it is shown that ACP5, together with the phosphatase activity, can medicate the progression and development of human genetic diseases and cancer. CONCLUSION: As a novel target, ACP5 plays a critical role in preventing, monitoring and treating various kinds of tumors, as well as accelerating the development of a promising therapeutic strategy for human genetic diseases. However, the explicit mechanism between ACP5 and cancer is not so clear. It is necessary and significant for us to pay more in-depth attention.


Assuntos
Neoplasias/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Humanos , Conformação Proteica , Fosfatase Ácida Resistente a Tartarato/química
7.
Molecules ; 23(2)2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29463037

RESUMO

Two new lignans, zanthoxyloside C (1) and zanthoxyloside D (2), together with nine known compounds comprising lignans (3-5), flavonoids (6-8), and phenolics (9-11), were isolated from the methanol extract of the stems of Zanthoxylum piperitum. All isolates were evaluated for their antioxidant and anti-osteoporotic activities using oxygen radical absorbance capacity (ORAC), cupric reducing antioxidant capacity (CUPRAC), and tartrate-resistant acid phosphatase (TRAP) assays. Compounds 7-10 showed peroxyl radical-scavenging capacities and 4, 6-7, and 9 showed reducing capacities. Moreover, compounds 3, 6-9, and 11 significantly suppressed TRAP activities. These results indicated that the stems of Z. piperitum could be an excellent source for natural antioxidant and anti-osteoporosis.


Assuntos
Antioxidantes/química , Osteoporose/tratamento farmacológico , Extratos Vegetais/química , Zanthoxylum/química , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Flavonoides/química , Humanos , Lignanas/química , Capacidade de Absorbância de Radicais de Oxigênio , Peróxidos/química , Fenóis/química , Extratos Vegetais/uso terapêutico , Fosfatase Ácida Resistente a Tartarato/química
8.
J Biomater Sci Polym Ed ; 29(1): 74-91, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29088987

RESUMO

The aim of this study was to develop a chitosan-based risedronate/zinc-hydroxyapatite intrapocket dental film (CRZHDF) for applications in the treatment of alveolar bone loss in an animal model of periodontitis. The physical characteristics (folding endurance, pH, mucoadhesive strength, risedronate content and release) of CRZHDF, exhibited results within the limit. X-ray diffraction analysis indicates reduced or disappeared crystallinity of risedronate and zinc-hydroxyapatite in presence of chitosan. Further, FTIR studies revealed stability of CRZHDF and compatibility between risedronate, zinc-hydroxyapatite and chitosan. Periodontitis was induced by Porphyromonas gingivalis-lipopolysaccharide injections around the mandibular first molar. We divided rats into 5 groups (12 rats/group): healthy, untreated periodontitis; periodontitis plus CRZHDF-A, periodontitis plus CRZHDF-B, and periodontitis plus chitosan film. After four weeks, blood samples and mandibles were obtained for biochemical, radiographic and histological analysis. Bone specific alkaline phosphatise activity and tartrate resistant acid phosphatase 5b was statistically lower in CRZHDF-A and CRZHDF-B groups as compared to the untreated periodontitis group (p < 0.0001). The expression of osteocalcin was statistically higher in CRZHDF-A and CRZHDF-B groups as compared to the untreated periodontitis group (p < 0.0001). Alveolar bone was intact in the healthy group. Local administration of CRZHDF resulted in significant improvements in the mesial and distal periodontal bone support (MPBS and DPBS, respectively) proportions (%), bone mineral density, and also reversed alveolar bone resorption when compared to the untreated periodontitis group (p < 0.001). The study reported here reveals that novel CRZHDF treatment effectively reduced alveolar bone destruction and contributes to periodontal healing in a rat model of experimental periodontitis.


Assuntos
Densidade Óssea/efeitos dos fármacos , Quitosana/química , Durapatita/química , Periodontite/tratamento farmacológico , Ácido Risedrônico/farmacologia , Zinco/química , Perda do Osso Alveolar , Animais , Conservadores da Densidade Óssea/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Osteocalcina/metabolismo , Osteoclastos/efeitos dos fármacos , Periodontite/fisiopatologia , Ratos Wistar , Ácido Risedrônico/administração & dosagem , Fosfatase Ácida Resistente a Tartarato/química
9.
Sci Rep ; 7(1): 12570, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974738

RESUMO

The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4'-dimethoxy-2,2'-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 µM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.


Assuntos
Asma/tratamento farmacológico , Macrófagos Alveolares/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fosfatase Ácida Resistente a Tartarato/antagonistas & inibidores , Animais , Asma/genética , Asma/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ouro/química , Humanos , Camundongos , Osteopontina/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Ligante RANK/genética , RNA Mensageiro/genética , Fosfatase Ácida Resistente a Tartarato/química , Fosfatase Ácida Resistente a Tartarato/genética , Xantina Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...