Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.802
Filtrar
1.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
2.
Front Biosci (Landmark Ed) ; 29(6): 213, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38940031

RESUMO

BACKGROUND: This study investigated the impact of salvianolic acids, derived from Danshen, on melanoma cell growth. Specifically, we assessed the ability of salvianolic acid A (Sal A) to modulate melanoma cell proliferation. METHODS: We used human melanoma A2058 and A375 cell lines to investigate the effects of Sal A on cell proliferation and death by measuring bromodeoxyuridine incorporation and lactate dehydrogenase release. We assessed cell viability and cycle progression using water soluble tetrazolium salt-1 (WST-1) mitochondrial staining and propidium iodide. Additionally, we used a phospho-kinase array to investigate intracellular kinase phosphorylation, specifically measuring the influence of Sal A on checkpoint kinase-2 (Chk-2) via western blot analysis. RESULTS: Sal A inhibited the growth of A2058 and A375 cells dose-responsively and induced cell cycle arrest at the G2/M phase. Notably, Sal A selectively induces Chk-2 phosphorylation without affecting Chk-1, thereby degrading Chk-2-regulated genes Cdc25A and Cdc2. However, Sal A does not affect the Chk1-Cdc25C pathway. CONCLUSIONS: Salvianolic acids, especially Sal A, effectively hinder melanoma cell growth by inducing Chk-2 phosphorylation and disrupting G2/M checkpoint regulation.


Assuntos
Ácidos Cafeicos , Proliferação de Células , Quinase do Ponto de Checagem 2 , Lactatos , Melanoma , Fosfatases cdc25 , Humanos , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Lactatos/farmacologia , Lactatos/metabolismo , Ácidos Cafeicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
3.
Anticancer Res ; 44(7): 2837-2846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925852

RESUMO

BACKGROUND/AIM: Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. RESULTS: MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). CONCLUSION: These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.


Assuntos
Neoplasias da Mama , Doxorrubicina , Humanos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Campos Eletromagnéticos , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células/efeitos dos fármacos , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fosfatases cdc25/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo
4.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713252

RESUMO

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Assuntos
Proteína Quinase CDC2 , Ciclina B1 , Proteínas de Ligação a DNA , Cinesinas , Mieloma Múltiplo , Fosfatases cdc25 , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1/metabolismo , Ciclina B1/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Cinesinas/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Prognóstico , Transdução de Sinais
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732131

RESUMO

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


Assuntos
Proteínas 14-3-3 , Simulação de Dinâmica Molecular , Ligação Proteica , Fosfatases cdc25 , Fosfatases cdc25/metabolismo , Fosfatases cdc25/química , Fosfatases cdc25/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos
6.
World J Gastroenterol ; 30(19): 2564-2574, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38817663

RESUMO

BACKGROUND: Cell division cyclin 25C (CDC25C) is a protein that plays a critical role in the cell cycle, specifically in the transition from the G2 phase to the M phase. Recent research has shown that CDC25C could be a potential therapeutic target for cancers, particularly for hepatocellular carcinoma (HCC). However, the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood. AIM: To explore the impact of CDC25C on cell proliferation and apoptosis, as well as its regulatory mechanisms in HCC development. METHODS: Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences (LV-CDC25C shRNA) to knock down CDC25C. Subsequently, a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo. Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays, respectively. The expression of endoplasmic reticulum (ER) stress-related molecules (glucose-regulated protein 78, X-box binding protein-1, and C/EBP homologous protein) was measured in both cells and subcutaneous xenografts using quantitative real-time PCR (qRT-PCR) and western blotting. Additionally, apoptosis was investigated using flow cytometry, qRT-PCR, and western blotting. RESULTS: CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction. A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice. CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response, ultimately promoting ER stress-induced apoptosis in HCC cells. CONCLUSION: The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.


Assuntos
Apoptose , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Fosfatases cdc25 , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Camundongos , Humanos , RNA Interferente Pequeno/metabolismo , Masculino , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinogênese/genética
7.
Environ Toxicol ; 39(5): 3225-3237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38357781

RESUMO

Lung cancer (LC) is the most prevalent cancer type, with a high mortality rate worldwide. The current treatment options for LC have not been particularly successful in improving patient outcomes. Yifei Sanjie (YFSJ), a well-applicated traditional Chinese medicine formula, is widely used to treat pulmonary diseases, especially LC, yet little is known about its molecular mechanisms. This study was conducted to explore the molecular mechanism by which YFSJ ameliorated LC progression. The A549, NCI-H1975, and Calu-3 cells were treated with the YFSJ formula and observed for colony number, apoptosis, migration, and invasion properties recorded via corresponding assays. The PRMT6-YBX1-CDC25A axis was tested and verified through luciferase reporter, RNA immunoprecipitation, and chromatin immunoprecipitation assays and rescue experiments. Our results demonstrated that YFSJ ameliorated LC cell malignant behaviors by increasing apoptosis and suppressing proliferation, migration, and invasion processes. We also noticed that the xenograft mouse model treated with YFSJ significantly reduced tumor growth compared with the control untreated group in vivo. Mechanistically, it was found that YFSJ suppressed the expression of PRMT6, YBX1, and CDC25A, while the knockdown of these proteins significantly inhibited colony growth, migration, and invasion, and boosted apoptosis in LC cells. In summary, our results suggest that YFSJ alleviates LC progression via the PRMT6-YBX1-CDC25A axis, confirming its efficacy in clinical use. The findings of our study provide a new regulatory network for LC growth and metastasis, which could shed new insights into pulmonary medical research.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Movimento Celular/genética , Pulmão/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
8.
Eur J Cancer ; 201: 113950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422585

RESUMO

BACKGROUND: There is no standard of care for ≥ 3rd-line treatment of metastatic pancreatic adenocarcinoma (PDAC). CBP501 is a novel calmodulin-binding peptide that has been shown to enhance the influx of platinum agents into tumor cells and tumor immunogenicity. This study aimed to (1) confirm efficacy of CBP501/cisplatin/nivolumab for metastatic PDAC observed in a previous phase 1 study, (2) identify combinations that yield 35% 3-month progression-free survival rate (3MPFS) and (3) define the contribution of CBP501 to the effects of combination therapy. METHODS: CBP501 16 or 25 mg/m2 (CBP(16) or CBP(25)) was combined with 60 mg/m2 cisplatin (CDDP) and 240 mg nivolumab (nivo), administered at 3-week intervals. Patients were randomized 1:1:1:1 to (1) CBP(25)/CDDP/nivo, (2) CBP(16)/CDDP/nivo, (3) CBP(25)/CDDP and (4) CDDP/nivo, with randomization stratified by ECOG PS and liver metastases. A Fleming two-stage design was used, yielding a one-sided type I error rate of 2.5% and 80% power when the true 3MPFS is 35%. RESULTS: Among 36 patients, 3MPFS was 44.4% in arms 1 and 2, 11.1% in arm 3% and 33.3% in arm 4. Two patients achieved a partial response in arm 1 (ORR 22.2%; none in other arms). Median PFS and OS were 2.4, 2.1, 1.5 and 1.5 months and 6.3, 5.3, 3.7 and 4.9 months, respectively. Overall, all treatment combinations were well tolerated. Most treatment-related adverse events were grade 1-2. CONCLUSIONS: The combination CBP(25)/(16)/CDDP/nivo demonstrated promising signs of efficacy and a manageable safety profile for the treatment of advanced PDAC. CLINICAL TRIAL REGISTRATION: NCT04953962.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Fragmentos de Peptídeos , Fosfatases cdc25 , Humanos , Cisplatino , Adenocarcinoma/patologia , Nivolumabe/efeitos adversos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
9.
J Genet Genomics ; 51(6): 617-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38224945

RESUMO

Endometriosis refers to as an estrogen-dependent disease. Estrogen receptor ß (ERß), the main estrogen receptor subtype which is encoded by the estrogen receptor 2 (ESR2) gene, can mediate the action of estrogen in endometriosis. Although selective estrogen receptor modulators can target the ERß, they are not specific due to the wide distribution of ERß. Recently, long noncoding RNAs have been implicated in endometriosis. Therefore, we aim to explore and validate the downstream regulatory mechanism of ERß, and to investigate the potential role of long intergenic noncoding RNA 1018 (LINC01018) as a nonhormonal treatment for endometriosis. Our study demonstrates that the expression levels of ESR2 and LINC01018 are increased in ectopic endometrial tissues and reveals a significant positive correlation between the ESR2 and LINC01018 expression. Mechanistically, ERß directly binds to an estrogen response element located in the LINC01018 promoter region and activates LINC01018 transcription. Functionally, ERß can regulate the CDC25C/CDK1/CyclinB1 pathway and promote ectopic endometrial stromal cell proliferation via LINC01018 in vitro. Consistent with these findings, the knockdown of LINC01018 inhibits endometriotic lesion proliferation in vivo. In summary, our study demonstrates that the ERß/LINC01018/CDC25C/CDK1/CyclinB1 signaling axis regulates endometriosis progression.


Assuntos
Proteína Quinase CDC2 , Proliferação de Células , Ciclina B1 , Endometriose , Receptor beta de Estrogênio , RNA Longo não Codificante , Transdução de Sinais , Fosfatases cdc25 , Endometriose/genética , Endometriose/patologia , Endometriose/metabolismo , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proliferação de Células/genética , Transdução de Sinais/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Camundongos , Animais , Endométrio/metabolismo , Endométrio/patologia
10.
Mol Biol Rep ; 51(1): 90, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194158

RESUMO

BACKGROUND: CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS: This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS: Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION: This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Mitoxantrona/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Dano ao DNA , Mitose , Luciferases , Fator de Transcrição E2F3 , Fosfatases cdc25/genética
11.
Bioorg Chem ; 142: 106952, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952486

RESUMO

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Proteômica , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Nitrogênio , Linhagem Celular Tumoral , Fosfatases cdc25 , Poli(ADP-Ribose) Polimerase-1 , Proteína Quinase CDC2
12.
Cell Rep ; 42(9): 113041, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682709

RESUMO

Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Processamento Alternativo/genética , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Ciclo Celular/genética , Divisão Celular , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
13.
Technol Cancer Res Treat ; 22: 15330338231184327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37386808

RESUMO

OBJECTIVE: LncRNA PART1 has been confirmed related to multiple cancer bioactivities mediated with vascular endothelial growth factor signaling. Nevertheless, the role of LncRNA PART1 in esophageal cancer induced angiogenesis remains unclear. The present work focused on assessing LncRNA PART1 effects on esophageal cancer-induced angiogenesis and exploring possible mechanisms. METHODS: Western blot and immunofluorescence were conducted for identifying EC9706 exosomes. MiR-302a-3p and LncRNA PART1 levels were assessed by real-time quantitative polymerase chain reaction. Cell Counting Kit-8, EdU, wound healing, transwell, and tubule information were adopted for detecting human umbilical vein endothelial cell viability, proliferation, migration, invasion, and tubule information, respectively. Starbase software and dual-luciferase reporter were conducted for predicting and judging the expression interrelation of LncRNA PART1 and its potential target-miR-302a-3p. The same methods were carried out for verifying the inhibiting influences of miR-302a-3p upregulation and its potential target-cell division cycle 25 A. RESULTS: LncRNA PART1 levels were upregulated and related to the overall survival of patients in esophageal cancer. EC9706-Exos accelerated human umbilical vein endothelial cell proliferation, migration, invasion, and tubule formation via LncRNA PART1. LncRNA PART1 served as a sponge of miR-302a-3p, then miR-302a-3p targeted cell division cycle 25 A, and EC9706-Exos accelerated human umbilical vein endothelial cell angiogenesis via LncRNA PART1/ miR-302a-3p/cell division cycle 25 A axis. CONCLUSION: EC9706-Exos accelerates human umbilical vein endothelial cell angiogenesis via LncRNA PART1/miR-302a-3p/ cell division cycle 25 A axis, indicating EC9706-Exos may act as a promoter of angiogenesis. Our research will contribute to clarify the mechanism of tumor angiogenesis.


Assuntos
Neoplasias Esofágicas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Fator A de Crescimento do Endotélio Vascular , Neoplasias Esofágicas/genética , Western Blotting , MicroRNAs/genética , Fosfatases cdc25
14.
Eur J Med Chem ; 258: 115505, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302341

RESUMO

Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 µM (DLD1) and 0.44 µM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.


Assuntos
Neoplasias Colorretais , Fosfatases cdc25 , Humanos , Divisão Celular , Ciclo Celular , Instabilidade Genômica , Neoplasias Colorretais/tratamento farmacológico
15.
Sci Rep ; 13(1): 7737, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173384

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with poor prognosis, necessitating identification of oncogenic mechanisms for novel therapeutic strategies. Recent studies have highlighted the significance of the transcription factor forkhead box K1 (FOXK1) in diverse biological processes and carcinogenesis of multiple malignancies, including ESCC. However, the molecular pathways underlying FOXK1's role in ESCC progression are not fully understood, and its potential role in radiosensitivity remains unclear. Here, we aimed to elucidate the function of FOXK1 in ESCC and explore the underlying mechanisms. Elevated FOXK1 expression levels were found in ESCC cells and tissues, positively correlated with TNM stage, invasion depth, and lymph node metastasis. FOXK1 markedly enhanced the proliferative, migratory and invasive capacities of ESCC cells. Furthermore, silencing FOXK1 resulted in heightened radiosensitivity by impeding DNA damage repair, inducing G1 arrest, and promoting apoptosis. Subsequent studies demonstrated that FOXK1 directly bound to the promoter regions of CDC25A and CDK4, thereby activating their transcription in ESCC cells. Moreover, the biological effects mediated by FOXK1 overexpression could be reversed by knockdown of either CDC25A or CDK4. Collectively, FOXK1, along with its downstream target genes CDC25A and CDK4, may serve as a promising set of therapeutic and radiosensitizing targets for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fatores de Transcrição Forkhead , Humanos , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Prognóstico , Tolerância a Radiação/genética , Ativação Transcricional
16.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37149988

RESUMO

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Camundongos , Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Fosfatases cdc25/metabolismo , Proteína Quinase CDC2/metabolismo
17.
Mol Med Rep ; 27(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37052240

RESUMO

Nasopharyngeal carcinoma (NPC) is a primary malignancy that originates from the nasopharyngeal region. It has been demonstrated that a decrease in the expression level of cell division cycle gene 25A (CDC25A) suppresses cell viability and induces apoptosis in a variety of different types of cancer. However, at present, the role of CDC25A in NPC has yet to be fully elucidated. Therefore, the aim of the present study was to investigate the role of CDC25A in NPC progression and to explore the potential underlying mechanism. Reverse transcription­quantitative PCR was performed to detect the relative mRNA levels of CDC25A and E2F transcription factor 1 (E2F1). Western blot analysis was subsequently used to determine the expression levels of CDC25A, Ki67, proliferating cell nuclear antigen (PCNA) and E2F1. CCK8 assay was employed to measure cell viability and flow cytometric analysis was employed to analyze the cell cycle. The binding sites between the CDC25A promoter and E2F1 were predicted using bioinformatics tools. Finally, luciferase reporter gene and chromatin immunoprecipitation assays were performed to verify the interaction between CDC25A and E2F1. The results obtained suggested that CDC25A is highly expressed in NPC cell lines and CDC25A silencing was found to inhibit cell proliferation, reduce the protein expression levels of Ki67 and PCNA and induce G1 arrest of NPC cells. Furthermore, E2F1 could bind CDC25A and positively regulate its expression at the transcriptional level. In addition, CDC25A silencing abolished the effects of E2F1 overexpression on cell proliferation and the cell cycle in NPC. Taken together, the findings of the present study showed that CDC25A silencing attenuated cell proliferation and induced cell cycle arrest in NPC and CDC25A was regulated by E2F1. Hence, CDC25A may be a promising therapeutic target for treatment of NPC.


Assuntos
Genes cdc , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Ki-67/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Checagem do Ciclo Celular/genética , Ciclo Celular , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
18.
ACS Chem Neurosci ; 14(7): 1226-1237, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942687

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases that are presently incurable. There have been reports of aberrant activation of cell cycle pathways in neurodegenerative diseases. Previously, we have found that Cdc25A is activated in models of neurodegenerative diseases, including AD and PD. In the present study, we have synthesized a small library of molecules targeting Cdc25A and tested their neuroprotective potential in cellular models of neurodegeneration. The Buchwald reaction and amide coupling were crucial steps in synthesizing the Cdc25A-targeting molecules. Several of these small-molecule inhibitors significantly prevented neuronal cell death induced by nerve growth factor (NGF) deprivation as well as 6-hydroxydopamine (6-OHDA) treatment. Lack of NGF signaling leads to neuron death during development and has been associated with AD pathogenesis. The NGF receptor TrkA has been reported to be downregulated at the early stages of AD, and its reduction is linked to cognitive failure. 6-OHDA, a PD mimic, is a highly oxidizable dopamine analogue that can be taken up by the dopamine transporters in catecholaminergic neurons and can induce cell death by reactive oxygen species (ROS) generation. Some of our newly synthesized molecules inhibit Cdc25A phosphatase activity, block loss of mitochondrial activity, and inhibit caspase-3 activation caused by NGF deprivation and 6-OHDA. Hence, it may be proposed that Cdc25A inhibition could be a therapeutic possibility for neurodegenerative diseases and these Cdc25A inhibitors could be effective treatments for AD and PD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Oxidopamina/toxicidade , Fator de Crescimento Neural/metabolismo , Fosfatases cdc25/metabolismo , Fosfatases cdc25/farmacologia , Dopamina/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo
19.
Int J Oncol ; 62(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929198

RESUMO

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fosfatases cdc25/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Nus , NF-kappa B/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
20.
J Biol Chem ; 299(3): 102957, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717077

RESUMO

Cyclin A and CDC25A are both activators of cyclin-dependent kinases (CDKs): cyclin A acts as an activating subunit of CDKs and CDC25A a phosphatase of the inhibitory phosphorylation sites of the CDKs. In this study, we uncovered an inverse relationship between the two CDK activators. As cyclin A is an essential gene, we generated a conditional silencing cell line using a combination of CRISPR-Cas9 and degron-tagged cyclin A. Destruction of cyclin A promoted an acute accumulation of CDC25A. The increase of CDC25A after cyclin A depletion occurred throughout the cell cycle and was independent on cell cycle delay caused by cyclin A deficiency. Moreover, we determined that the inverse relationship with cyclin A was specific for CDC25A and not for other CDC25 family members or kinases that regulate the same sites in CDKs. Unexpectedly, the upregulation of CDC25A was mainly caused by an increase in transcriptional activity instead of a change in the stability of the protein. Reversing the accumulation of CDC25A severely delayed G2-M in cyclin A-depleted cells. Taken together, these data provide evidence of a compensatory mechanism involving CDC25A that ensures timely mitotic entry at different levels of cyclin A.


Assuntos
Ciclina A , Quinases Ciclina-Dependentes , Fosfatases cdc25 , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Ciclo Celular , Divisão Celular , Ciclina A/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...