Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805510

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and ß-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT ß-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.


Assuntos
Apolipoproteína A-I , Apolipoproteínas , Simulação de Dinâmica Molecular , Fosfatidilcolina-Esterol O-Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Sítios de Ligação , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Nanoestruturas/química , Ligação Proteica , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo
2.
Mol Pharm ; 19(11): 4135-4148, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111986

RESUMO

The mechanistic details behind the activation of lecithin-cholesterol acyltransferase (LCAT) by apolipoprotein A-I (apoA-I) and its mimetic peptides are still enigmatic. Resolving the fundamental principles behind LCAT activation will facilitate the design of advanced HDL-mimetic therapeutic nanodiscs for LCAT deficiencies and coronary heart disease and for several targeted drug delivery applications. Here, we have combined coarse-grained molecular dynamics simulations with complementary experiments to gain mechanistic insight into how apoA-Imimetic peptide 22A and its variants tune LCAT activity in peptide-lipid nanodiscs. Our results highlight that peptide 22A forms transient antiparallel dimers in the rim of nanodiscs. The dimerization tendency considerably decreases with the removal of C-terminal lysine K22, which has also been shown to reduce the cholesterol esterification activity of LCAT. In addition, our simulations revealed that LCAT prefers to localize to the rim of nanodiscs in a manner that shields the membrane-binding domain (MBD), αA-αA', and the lid amino acids from the water phase, following previous experimental evidence. Meanwhile, the location and conformation of LCAT in the rim of nanodiscs are spatially more restricted when the active site covering the lid of LCAT is in the open form. The average location and spatial dimensions of LCAT in its open form were highly compatible with the electron microscopy images. All peptide 22A variants studied here had a specific interaction site in the open LCAT structure flanked by the lid and MBD domain. The bound peptides showed different tendencies to form antiparallel dimers and, interestingly, the temporal binding site occupancies of the peptide variants affected their in vitro ability to promote LCAT-mediated cholesterol esterification.


Assuntos
Apolipoproteína A-I , Fosfatidilcolina-Esterol O-Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Apolipoproteína A-I/química , Fosfolipídeos/metabolismo , Lecitinas , Esterol O-Aciltransferase/metabolismo , Lipoproteínas HDL/química , Domínio Catalítico , Peptídeos , Colesterol/metabolismo
3.
ACS Appl Mater Interfaces ; 14(1): 404-416, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962752

RESUMO

Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Lipoproteínas HDL/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/química , Esterol O-Aciltransferase/química , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Teste de Materiais , Camundongos , Estrutura Molecular , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/metabolismo
4.
Commun Biol ; 3(1): 28, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31942029

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.


Assuntos
Lipoproteínas HDL/química , Modelos Moleculares , Complexos Multiproteicos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Conformação Proteica , Sítios de Ligação , Domínio Catalítico , Lisina/química , Lisina/metabolismo , Espectrometria de Massas , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade
5.
Lipids Health Dis ; 18(1): 132, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31164121

RESUMO

BACKGROUND: Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol in high- and low-density lipoproteins (HDL and LDL). Mutations in LCAT gene causes familial LCAT deficiency, which is characterized by very low plasma HDL-cholesterol levels (Hypoalphalipoproteinemia), corneal opacity and anemia, among other lipid-related traits. Our aim is to evaluate clinical/biochemical features of a Chilean family with a proband showing clinical signs of familial LCAT deficiency, as well as to identify and assess the functional effects of LCAT mutations. METHODS: An adult female proband with hypoalphalipoproteinemia, corneal opacity and mild anemia, as well as her first-degree relatives, were recruited for clinical, biochemical, genetic, in-silico and in-vitro LCAT analysis. Sequencing of exons and intron-exon boundaries was performed to identify mutations. Site-directed mutagenesis was carried out to generate plasmids containing cDNA with wild type or mutant sequences. Such expression vectors were transfected to HEK-239 T cells to asses the effect of LCAT variants in expression, synthesis, secretion and enzyme activity. In-silico prediction analysis and molecular modeling was also used to evaluate the effect of LCAT variants. RESULTS: LCAT sequencing identified rare p.V333 M and p.M404 V missense mutations in compound heterozygous state in the proband, as well the common synonymous p.L363 L variant. LCAT protein was detected in proband's plasma, but with undetectable enzyme activity compared to control relatives. HEK-293 T transfected cells with vector expression plasmids containing either p.M404 V or p.V333 M cDNA showed detectable LCAT protein expression both in supernatants and lysates from cultured cells, but with much lower enzyme activity compared to cells transfected with the wild-type sequence. Bioinformatic analyses also supported a causal role of such rare variations in LCAT lack of function. Additionally, the proband carried the minor allele of the synonymous p.L363 L variant. However, this variant is unlikely to affect the clinical phenotype of the proband given its relatively high frequency in the Chilean population (4%) and its small putative effect on plasma HDL-cholesterol levels. CONCLUSION: Genetic, biochemical, in vitro and in silico analyses indicate that the rare mutations p.M404 V and p.V333 M in LCAT gene lead to suppression of LCAT enzyme activity and cause clinical features of familial LCAT deficiency.


Assuntos
Hipoalfalipoproteinemias/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Lipídeos/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Adulto , Idoso , Chile/epidemiologia , Colesterol/sangue , HDL-Colesterol/sangue , Opacidade da Córnea/genética , Opacidade da Córnea/patologia , Éxons/genética , Feminino , Células HEK293 , Humanos , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/epidemiologia , Hipoalfalipoproteinemias/patologia , Deficiência da Lecitina Colesterol Aciltransferase/sangue , Deficiência da Lecitina Colesterol Aciltransferase/epidemiologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/sangue , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Fosfatidilcolina-Esterol O-Aciltransferase/química , Relação Estrutura-Atividade
6.
Elife ; 72018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479275

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.


Assuntos
HDL-Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Domínio Catalítico , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Lipídeos de Membrana/metabolismo , Mutação/genética , Fosfatidilcolina-Esterol O-Aciltransferase/química , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade
7.
J Lipid Res ; 59(4): 670-683, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29438987

RESUMO

LCAT is an enzyme responsible for the formation of cholesteryl esters from unesterified cholesterol (UC) and phospholipid (PL) molecules in HDL particles. However, it is poorly understood how LCAT interacts with lipoproteins and how apoA-I activates it. Here we have studied the interactions between LCAT and lipids through molecular simulations. In addition, we studied the binding of LCAT to apoA-I-derived peptides, and their effect on LCAT lipid association-utilizing experiments. Results show that LCAT anchors itself to lipoprotein surfaces by utilizing nonpolar amino acids located in the membrane-binding domain and the active site tunnel opening. Meanwhile, the membrane-anchoring hydrophobic amino acids attract cholesterol molecules next to them. The results also highlight the role of the lid-loop in the lipid binding and conformation of LCAT with respect to the lipid surface. The apoA-I-derived peptides from the LCAT-activating region bind to LCAT and promote its lipid surface interactions, although some of these peptides do not bind lipids individually. The transfer free-energy of PL from the lipid bilayer into the active site is consistent with the activation energy of LCAT. Furthermore, the entry of UC molecules into the active site becomes highly favorable by the acylation of SER181.


Assuntos
Apolipoproteína A-I/química , Lipídeos/química , Peptídeos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Apolipoproteína A-I/metabolismo , Domínio Catalítico , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
8.
J Lipid Res ; 59(2): 348-356, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208698

RESUMO

ApoA-I activates LCAT that converts lipoprotein cholesterol to cholesteryl ester (CE). Molecular dynamic simulations suggested earlier that helices 5 of two antiparallel apoA-I molecules on discoidal HDL form an amphipathic tunnel for migration of acyl chains and unesterified cholesterol to the active sites of LCAT. Our recent crystal structure of Δ(185-243)apoA-I showed the tunnel formed by helices 5/5, with two positively charged residues arginine 123 positioned at the edge of the hydrophobic tunnel. We hypothesized that these uniquely positioned residues Arg123 are poised for interaction with fatty acids produced by LCAT hydrolysis of the sn-2 chains of phosphatidylcholine, thus positioning the fatty acids for esterification to cholesterol. To test the importance of Arg123 for LCAT phospholipid hydrolysis and CE formation, we generated apoA-I[R123A] and apoA-I[R123E] mutants and made discoidal HDL with the mutants and WT apoA-I. Neither mutation of Arg123 changed the particle composition or size, or the protein conformation or stability. However, both mutations of Arg123 significantly reduced LCAT catalytic efficiency and the apparent Vmax for CE formation without affecting LCAT phospholipid hydrolysis. A control mutation, apoA-I[R131A], did not affect LCAT phospholipid hydrolysis or CE formation. These data suggest that Arg123 of apoA-I on discoidal HDL participates in LCAT-mediated cholesterol esterification.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Arginina/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Apolipoproteína A-I/genética , Colesterol/metabolismo , Humanos , Hidrólise , Lecitinas/metabolismo , Conformação Molecular , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfolipídeos/metabolismo
9.
J Biol Chem ; 292(49): 20313-20327, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29030428

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed.


Assuntos
Apolipoproteína A-I/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/química , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Ativação Enzimática , Humanos , Lipoproteínas HDL/metabolismo , Mutagênese Sítio-Dirigida , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Conformação Proteica
10.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576974

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Assuntos
Cisteína/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Compostos de Sulfidrila/química
11.
J Biol Chem ; 291(12): 6386-95, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797122

RESUMO

The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu(159)-Leu(170)) in nascent HDL, the so-called "solar flare" (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861-868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro(165), Tyr(166), Ser(167), and Asp(168)) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr(166) was further supported using reconstituted HDL generated from apoA-I mutants (Tyr(166) → Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr(166)-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr(166)-apoA-I, after subcutaneous injection into hLCAT(Tg/Tg), apoA-I(-/-) mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas HDL/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Animais , Humanos , Cinética , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
12.
Protein Expr Purif ; 125: 1-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26363122

RESUMO

Lecithin-cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of cholesterol and its subsequent incorporation into the core of high density lipoprotein (HDL) particles. It is also involved in reverse cholesterol transport (RCT), the mechanism by which cholesterol is removed from peripheral cells and transported to the liver for excretion. These processes are involved in the development of atherosclerosis and coronary heart disease (CHD) and may have therapeutic implications. This work describes the use of baculovirus as a transducing vector to express LCAT in mammalian cells, expression of the recombinant protein as a high-mannose glycoform suitable for deglycosylation by Endo H and its purification to homogeneity and characterization. The importance of producing underglycosylated forms of secreted glycoproteins to obtain high-resolution crystal structures is discussed.


Assuntos
Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Ativação Enzimática , Expressão Gênica , Células HEK293 , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
13.
J Biol Chem ; 291(6): 2799-811, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644477

RESUMO

Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouse(TM) platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease.


Assuntos
Anticorpos Monoclonais , Doenças Cardiovasculares , HDL-Colesterol , Dislipidemias , Fosfatidilcolina-Esterol O-Aciltransferase , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Complexo Antígeno-Anticorpo/sangue , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Sítios de Ligação de Anticorpos , Células CHO , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , HDL-Colesterol/sangue , HDL-Colesterol/imunologia , Cricetinae , Cricetulus , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/imunologia , Humanos , Macaca fascicularis , Camundongos , Fosfatidilcolina-Esterol O-Aciltransferase/antagonistas & inibidores , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/imunologia , Estrutura Quaternária de Proteína
14.
J Biol Chem ; 291(8): 3725-46, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26694607

RESUMO

The protozoan parasite Toxoplasma gondii develops within a parasitophorous vacuole (PV) in mammalian cells, where it scavenges cholesterol. When cholesterol is present in excess in its environment, the parasite expulses this lipid into the PV or esterifies it for storage in lipid bodies. Here, we characterized a unique T. gondii homologue of mammalian lecithin:cholesterol acyltransferase (LCAT), a key enzyme that produces cholesteryl esters via transfer of acyl groups from phospholipids to the 3-OH of free cholesterol, leading to the removal of excess cholesterol from tissues. TgLCAT contains a motif characteristic of serine lipases "AHSLG" and the catalytic triad consisting of serine, aspartate, and histidine (SDH) from LCAT enzymes. TgLCAT is secreted by the parasite, but unlike other LCAT enzymes it is cleaved into two proteolytic fragments that share the residues of the catalytic triad and need to be reassembled to reconstitute enzymatic activity. TgLCAT uses phosphatidylcholine as substrate to form lysophosphatidylcholine that has the potential to disrupt membranes. The released fatty acid is transferred to cholesterol, but with a lower transesterification activity than mammalian LCAT. TgLCAT is stored in a subpopulation of dense granule secretory organelles, and following secretion, it localizes to the PV and parasite plasma membrane. LCAT-null parasites have impaired growth in vitro, reduced virulence in animals, and exhibit delays in egress from host cells. Parasites overexpressing LCAT show increased virulence and faster egress. These observations demonstrate that TgLCAT influences the outcome of an infection, presumably by facilitating replication and egress depending on the developmental stage of the parasite.


Assuntos
Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Toxoplasmose/enzimologia , Domínio Catalítico , Linhagem Celular , Humanos , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/patologia
15.
J Lipid Res ; 56(9): 1711-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195816

RESUMO

LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/ß hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.


Assuntos
Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Colesterol/genética , Cristalografia por Raios X , Humanos , Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
16.
Nat Commun ; 6: 6250, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25727495

RESUMO

Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/ß hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.


Assuntos
Lisossomos/enzimologia , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Sequência de Aminoácidos , Colesterol/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Conformação Proteica , Surfactantes Pulmonares/metabolismo , Alinhamento de Sequência
17.
J Lipid Res ; 56(3): 620-634, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589508

RESUMO

LCAT is activated by apoA-I to form cholesteryl ester. We combined two structures, phospholipase A2 (PLA2) that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and bacteriophage tubulin PhuZ, as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtaposition of multiple structural motifs matching experimental data is compelling evidence for the general correctness of many features of the model: i) The N-terminal 10 residues of the model, required for LCAT activity, extend the hydrophobic binding trough for the sn-2 chain 15-20 Å relative to PLA2. ii) The topography of the trough places the ester bond of the sn-2 chain less than 5 Å from the hydroxyl of the catalytic nucleophile, S181. iii) A ß-hairpin resembling a lipase lid separates S181 from solvent. iv) S181 interacts with three functionally critical residues: E149, that regulates sn-2 chain specificity, and K128 and R147, whose mutations cause LCAT deficiency. Because the model provides a novel explanation for the complicated thermodynamic problem of the transfer of hydrophobic substrates from HDL to the catalytic triad of LCAT, it is an important step toward understanding the antiatherogenic role of HDL in reverse cholesterol transport.


Assuntos
Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Transporte Biológico Ativo , Colesterol/química , Colesterol/genética , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
18.
Exp Mol Pathol ; 97(2): 266-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25036405

RESUMO

This study aims to evaluate the genetic basis and activity of lecithin cholesterol acyltransferase (LCAT) in a novel Mongolian gerbil model for hyperlipidemia. Gerbils may be susceptible to high fat and cholesterol (HF/HC) diets, which can rapidly lead to the development of hyperlipidemia. Approximately 10-30% of gerbils that are over 8months old and fed controlled diets spontaneously develop hyperlipidemia. Using the HF/HC diet model, we detected triglycerides (TG), total cholesterol (TC), HDL (high density lipoprotein)-C, LDL (low density lipoprotein)-C and LCAT in both old (>8months) and young gerbils. The TC and HDL-C levels were two times higher in old gerbils compared with young gerbils (P<0.01). However, in the old group the LCAT activity fell slightly compared with the normal lipidemia group. It is reasonable to hypothesize that this may be associated with single nucleotide polymorphisms of the LCAT gene. We cloned this gene to investigate the sensitivity of the gerbil to the HF/HC diet and spontaneous hyperlipidemia. The entire LCAT gene was cloned by splicing sequences of RACE (rapid amplification of cDNA ends) and nest-PCR products (AN: KC533867.1). The results showed that the 3683base pair gene consists of six exons and five introns. The LCAT protein consists of 444 amino acid (AA) residues, which are analogous to the human LCAT gene, and includes 24 signal peptide AA and 420 mature protein AA. Expression of LCAT was detected in the kidney, spleen and adrenal tissue, apart from the liver, by immunohistochemistry. The abundance of the protein was greater in the older group compared with the control group. Polymorphisms were analyzed by PCR-SSCP (PCR-single-strand conformation polymorphism) but none were found in 444 animals of the ZCLA closed population (a Chinese cultured laboratory gerbil population).


Assuntos
Hiperlipidemias/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Polimorfismo de Nucleotídeo Único , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Éxons , Gerbillinae , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Íntrons , Masculino , Especificidade de Órgãos , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
19.
PLoS One ; 9(4): e95044, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736652

RESUMO

LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallographic structures. LCAT shows the typical folding of the α/ß hydrolase superfamily, and its topology is characterized by a combination of α-helices covering a central 7-strand ß-sheet. LCAT presents a Ser/Asp/His catalytic triad with a peculiar geometry, which is shared with such other enzyme classes as lipases, proteases and esterases. Our proposed model was validated through different approaches. We evaluated the impact on LCAT structure of some point mutations close to the enzyme active site (Lys218Asn, Thr274Ala, Thr274Ile) and explained, at a molecular level, their phenotypic effects. Furthermore, we devised some LCAT modulators either designed through a de novo strategy or identified through a virtual high-throughput screening pipeline. The tested compounds were proven to be potent inhibitors of the enzyme activity.


Assuntos
Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Animais , Sítios de Ligação , Catálise , Ativação Enzimática , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Conformação Proteica , Especificidade por Substrato
20.
Protein Sci ; 22(12): 1739-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115046

RESUMO

Recombinant human lecithin-cholesterol acyltransferase Fc fusion (huLCAT-Fc) is a chimeric protein produced by fusing human Fc to the C-terminus of the human enzyme via a linker sequence. The huLCAT-Fc homodimer contains five N-linked glycosylation sites per monomer. The heterogeneity and site-specific distribution of the various glycans were examined using enzymatic digestion and LC-MS/MS, followed by automatic processing. Almost all of the N-linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N-linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N-linked site exclusively contain typical asialobiantennary structures. HuLCAT-Fc was also confirmed to have mucin-type glycans attached at T407 and S409 . When LCAT-Fc fusions were constructed using a G-S-G-G-G-G linker, an unexpected +632 Da xylose-based glycosaminoglycan (GAG) tetrasaccharide core of Xyl-Gal-Gal-GlcA was attached to S418 . Several minor intermediate species including Xyl, Xyl-Gal, Xyl-Gal-Gal, and a phosphorylated GAG core were also present. The mucin-type O-linked glycans can be effectively released by sialidase and O-glycanase; however, the GAG could only be removed and localized using chemical alkaline ß-elimination and targeted LC-MS/MS. E416 (the C-terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O-xylosyltransferase. HuLCAT-Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPPE416 GS418 GGGGDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.


Assuntos
Oligossacarídeos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Polissacarídeos/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Glicopeptídeos/química , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Espectrometria de Massas , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...