Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fed Regist ; 70(81): 21947-50, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858911

RESUMO

The Food and Drug Administration (FDA) is reclassifying tricalcium phosphate (TCP) granules for dental bone repair from class III to class II (special controls), classifying into class II (special controls) other bone grafting material for dental indications, and revising the classification name and identification of the device type. Bone grafting materials that contain a drug that is a therapeutic biologic will remain in class III and continue to require a premarket approval application. The classification identification includes materials such as hydroxyapatite, tricalcium phosphate, polylactic and polyglycolic acids, or collagen. This action is being taken to establish sufficient regulatory controls that will provide reasonable assurance of the safety and effectiveness of these devices. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for the class II devices.


Assuntos
Substitutos Ósseos/classificação , Fosfatos de Cálcio/classificação , Materiais Dentários/classificação , Transplante Ósseo , Colágeno/classificação , Durapatita/classificação , Segurança de Equipamentos/classificação , Humanos , Ácido Láctico/classificação , Ácido Poliglicólico/classificação , Polímeros/classificação , Estados Unidos , United States Food and Drug Administration
2.
Biomaterials ; 25(6): 987-94, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14615163

RESUMO

Fourteen different synthetic or biological bone substitution materials were characterised by high-resolution X-ray diffractometry, infrared spectroscopy, thermogravimetry, and scanning electron microscopy. Thus, the main parameters chemical composition, crystallinity, and morphology were determined. The results are compared with natural bone samples. The materials fall into different classes: Chemically treated bone, calcined bovine bone, algae-derived hydroxyapatite, synthetic hydroxyapatite, peptide-loaded hydroxyapatite, and synthetic beta-TCP ceramics.


Assuntos
Substitutos Ósseos/química , Substitutos Ósseos/classificação , Osso e Ossos/química , Osso e Ossos/ultraestrutura , Fosfatos de Cálcio/química , Fosfatos de Cálcio/classificação , Teste de Materiais/métodos , Animais , Materiais Biocompatíveis/química , Bovinos , Humanos , Conformação Molecular , Propriedades de Superfície
3.
Am J Dent ; 16(3): 155-60, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12967067

RESUMO

PURPOSE: To test the hypothesis that anticalculus agents cannot completely inhibit calculus formation but can influence the types of calcium phosphate which form, i.e., they can influence the composition of the inorganic component of human dental calculus (HDC). MATERIALS AND METHODS: The composition of HDC specimens obtained from a 16-week multi-center clinical study using three regimens were analyzed, investigators blinded. The treatment regimens were: (a) standard dentifrice (SD), (b) pyrophosphate antitartar dentifrice, and (c) SD with Tartar Control Listerine Antiseptic mouthrinse (containing essential oils and 0.09% zinc chloride). 25 individual samples and eight pooled samples from each group were analyzed using X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. RESULTS: (1) relative frequency of occurrence for: (a) bacteria: Group A = 100%, Group B = 60%, and Group C = 25%; (b) Carbonate hydroxyapatite (CHA): Groups A, B, and C = 100%; (c) dicalcium phosphate dihydrate (DCPD): Group A = 55%; Group B = 45%; Group C = 80%; (2) The relative amount of DCPD is inversely proportional to that of CHA in HDC: the higher the amount of DCPD, the lower the amount of CHA. Group C regimen with essential oil/ZnCl2 mouthrinse and standard dentifrice showed a significant anti-microbial effect and favored the formation of DCPD, the most soluble Ca-P.


Assuntos
Cloretos/uso terapêutico , Cálculos Dentários/química , Antissépticos Bucais/uso terapêutico , Óleos Voláteis/uso terapêutico , Compostos de Zinco/uso terapêutico , Anti-Infecciosos Locais/uso terapêutico , Bactérias/ultraestrutura , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/classificação , Dentifrícios/uso terapêutico , Difosfatos/uso terapêutico , Método Duplo-Cego , Durapatita/análise , Humanos , Microscopia Eletrônica de Varredura , Compostos Orgânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
J Biomed Mater Res B Appl Biomater ; 65(2): 245-51, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12687717

RESUMO

It has been postulated that the in vivo resorption rates of calcium-phosphate bone-graft materials are closely related to their dissolution rates in demineralizing solutions having ionic compositions mimicking the acidic environment produced by osteoclasts. Thus, it should be possible to use an in vitro model to produce dissolution-rate data of calcium-phosphate materials as a starting point for predicting in vivo resorption properties. Direct pH measurements of the extracellular fluid from bone-resorbing cells showed that the pH was as low as 3. In the present study, a dual constant-composition dissolution system was used as an in vitro resorption model to compare dissolution rates of different calcium-phosphate materials. NIST standard reference hydroxyapatite (HA), dicalcium-phosphate dihydrate (DCPD), and calcium-phosphate cement (CPC) discs of known dimensions (6-mm d x 3-mm h) were allowed to dissolve at 37 degrees C in a solution that had an inorganic composition similar to that of serum ([Ca] = 1.15 mmol/l; [P] = 1.2 mmol/l; [KCl] = 133 mmol/l) and a pH of 3.0. A Ca ion-specific electrode and a pH electrode were used to control the addition of titrants to compensate for the increases in calcium and phosphate concentrations, respectively, in the demineralizing solution. The rate and stoichiometry (Ca/P molar ratio) of dissolution were obtained from the titration data. Each solid dissolved at an approximately constant rate during the dissolution process. The dissolution rates, expressed in mg cm(-2) min(-1), (mean +/- standard deviation, n = 5) were for HA: 6.58 +/- 1.22; DCPD: 21.0 +/- 2.6; and CPC: 8.21 +/- 0.73. DCPD dissolved three times faster than HA (p < 0.05). CPC dissolved 1.2 times faster than HA but the difference was not statistically significant (p > 0.05). This model can be used to study the rate and stoichiometry of dissolution of calcium-phosphate bone-graft materials and coatings under a wide range of mineral saturation conditions.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Análise de Falha de Equipamento/instrumentação , Teste de Materiais/instrumentação , Titulometria/instrumentação , Titulometria/métodos , Absorção , Materiais Biocompatíveis/química , Fosfatos de Cálcio/classificação , Durapatita/química , Eletroquímica/instrumentação , Eletroquímica/métodos , Análise de Falha de Equipamento/métodos , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Teste de Materiais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...