Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Structure ; 32(6): 645-647, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848679

RESUMO

Phospholipase D (PLD) family proteins degrade phospholipids and nucleic acids. In the current issue of Structure, Yuan et al.1 report crystal structures of lysosomal PLD3 and PLD4 with and without a single-stranded DNA substrate. Their manuscript reveals a catalytic ping-pong mechanism and explains how disease-associated mutations compromise PLD3/4 function.


Assuntos
Lisossomos , Fosfolipase D , Fosfolipase D/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Lisossomos/metabolismo , Humanos
2.
Anal Cell Pathol (Amst) ; 2024: 6681911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487684

RESUMO

Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.


Assuntos
Fosfolipase D , Animais , Fosfolipase D/química , Fosfolipase D/metabolismo , Isoformas de Proteínas/metabolismo , Citoesqueleto/metabolismo , Transdução de Sinais , Mamíferos/metabolismo
3.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38537643

RESUMO

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Assuntos
Domínio Catalítico , Modelos Moleculares , Fosfolipase D , Fosfolipase D/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Humanos , Especificidade por Substrato , Cristalografia por Raios X , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Fosforilação , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Multimerização Proteica , Ligação Proteica , Exodesoxirribonucleases
4.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739813

RESUMO

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Humanos , Animais , Esfingomielina Fosfodiesterase , Fosfolipase D/química , Fosfolipase D/metabolismo , Ceramidas , Fosfatos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/metabolismo
5.
ChemSusChem ; 17(3): e202300803, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37801034

RESUMO

Lignin nanoparticles (LNPs) are promising components for various materials, given their controllable particle size and spherical shape. However, their origin from supramolecular aggregation has limited the applicability of LNPs as recoverable templates for immobilization of enzymes. In this study, we show that stabilized LNPs are highly promising for the immobilization of phospholipase D (PLD), the enzyme involved in the biocatalytic production of high-value polar head modified phospholipids of commercial interest, phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine. Starting from hydroxymethylated lignin, LNPs were prepared and successively hydrothermally treated to obtain c-HLNPs with high resistance to organic solvents and a wide range of pH values, covering the conditions for enzymatic reactions and enzyme recovery. The immobilization of PLD on c-HLNPs (PLD-c-HLNPs) was achieved through direct adsorption. We then successfully exploited this new enzymatic preparation in the preparation of pure polar head modified phospholipids with high yields (60-90 %). Furthermore, the high stability of PLD-c-HLNPs allows recycling for a number of reactions with appreciable maintenance of its catalytic activity. Thus, PLD-c-HLNPs can be regarded as a new, chemically stable, recyclable and user-friendly biocatalyst, based on a biobased inexpensive scaffold, to be employed in sustainable chemical processes for synthesis of value-added phospholipids.


Assuntos
Nanopartículas , Fosfolipase D , Fosfolipídeos/química , Lignina , Fosfolipase D/química , Fosfolipase D/metabolismo , Biocatálise
6.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994783

RESUMO

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Assuntos
Exodesoxirribonucleases , Fosfolipase D , Humanos , Lisossomos/metabolismo , Fosfolipase D/química , Fosfolipases , Exodesoxirribonucleases/química
7.
Int J Biol Macromol ; 246: 125588, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399872

RESUMO

In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.


Assuntos
Venenos de Aranha , Aranhas , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos/química , Antivenenos/química , Reações Cruzadas , Miniproteínas Nó de Cistina/química , Fosfolipase D/química , Venenos de Aranha/química , Aranhas/química , Epitopos/química
8.
Protein Sci ; 32(7): e4701, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313620

RESUMO

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Assuntos
Fosfolipase D , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência , Domínio Catalítico , Bactérias/metabolismo
9.
J Pharm Biomed Anal ; 229: 115354, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37003086

RESUMO

N-Acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) is the major enzyme for the biosynthesis of the endocannabinoid anandamide. The role of NAPE-PLD in various physiological and pathophysiological conditions is currently under investigation. For example, the enzyme might be involved in the control of neuronal activity, embryonic development and pregnancy, and prostate cancer. We synthesized a novel NAPE-PLD substrate with a fluorogenic pyrene substituent at the N-acyl residue as tool compound for studying this enzyme. As shown by HPLC with fluorescence detection, in rat brain microsomes the substrate was transformed into the expected pyrene-labeled N-acylethanolamine (NAE), but minor amounts of three by-products could also be detected. In the presence of pan-serine hydrolase and secretory phospholipase A2 inhibitors, the generation of these compounds, whose identity was verified using reference substances, was abolished. Based on these results, a method for determining the activity of NAPE-PLD was developed, validated, and applied to evaluate the action of known inhibitors of this enzyme. With human sperm, it was shown that the fluorescent substrate can also be used to study NAPE metabolism in intact cells.


Assuntos
Fosfolipase D , Ratos , Animais , Masculino , Humanos , Fosfolipase D/química , Fosfolipase D/metabolismo , Cromatografia Líquida de Alta Pressão , Sêmen/metabolismo , Endocanabinoides
10.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073086

RESUMO

Plasmalogens are a subclass of glycerophospholipids that have a vinyl-ether bond at the sn-1 position and are thought to have several physiological functions. The creation of non-natural plasmalogens with functional groups is desired for the establishment of the prevention of diseases caused by the depletion of plasmalogens. Phospholipase D (PLD) has both hydrolysis and transphosphatidylation activities. In particular, PLD from Streptomyces antibioticus has been investigated extensively due to its high transphosphatidylation activity. However, it has been difficult to stably express recombinant PLD in Escherichia coli and to express it as a soluble protein. In this study, we used the E. coli strain, SoluBL21™, and achieved stable PLD expression from the T7 promoter and increased soluble fraction in the cell. We also improved the purification method of PLD using His-tag at the C terminus. We obtained PLD with ∼730 mU mg-1 protein of specific activity, and the yield was ∼420 mU l-1 culture, corresponding to 76 mU per gram of wet cells. Finally, we synthesized a non-natural plasmalogen with 1,4-cyclohexanediol bound to the phosphate group at the sn-3 position by transphosphatidylation of the purified PLD. This method will contribute to the expansion of the chemical structure library of non-natural plasmalogens.


Assuntos
Fosfolipase D , Streptomyces antibioticus , Plasmalogênios/metabolismo , Streptomyces antibioticus/metabolismo , Fosfolipase D/genética , Fosfolipase D/química , Escherichia coli/genética , Escherichia coli/metabolismo , Solubilidade
11.
Appl Biochem Biotechnol ; 195(12): 7808-7820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37093529

RESUMO

Phospholipase D (PLD) with the higher transphosphatidylation activity was screened from Streptomyces sp. LD0501 basing on the protoplast mutagenesis technology. Then, it was successfully bio-imprinted to form a hyperactivated structure and rigidified by the intramolecular cross-linking, which was immobilized on the nonporous nanoscale silica. Characterization techniques were employed to investigate the structure and physicochemical properties of the catalysts, including Fourier transform infrared (FTIR) spectra and scanning electron microscopy (SEM) analysis. Transphosphatidylation activity and selectivity were improved significantly when immobilized PLD was used. The maximum yield for the production of phosphatidylserine (PS) reached 97% and the side reaction, the hydrolysis, was minimized. These results were further confirmed by the nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. The imprint-induced characteristics of PLD was successfully "remembered" even in the present of much water. In addition, this immobilized hyperactivated PLD showed the excellent operational stabilities and environmental tolerances.


Assuntos
Fosfolipase D , Fosfolipase D/genética , Fosfolipase D/química , Catálise , Água/química , Espectroscopia de Ressonância Magnética , Fosfatidilserinas/química
12.
Biochimie ; 211: 122-130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36963559

RESUMO

Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with ß-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Domínio Catalítico , Esfingomielina Fosfodiesterase , Diester Fosfórico Hidrolases/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Aranhas/genética , Venenos de Aranha/genética , Venenos de Aranha/química
13.
FEBS Lett ; 596(23): 3024-3036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266963

RESUMO

Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.


Assuntos
Arabidopsis , Brassica , Fosfolipase D , Raphanus , Fosfolipase D/genética , Fosfolipase D/química , Raphanus/metabolismo , Fosfolipases/metabolismo , Esfingolipídeos/metabolismo , Brassica/genética , Brassica/química , Arabidopsis/genética , Arabidopsis/metabolismo
14.
Acc Chem Res ; 55(21): 3088-3098, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278840

RESUMO

Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.


Assuntos
Ácidos Fosfatídicos , Fosfolipase D , Optogenética , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas , Fosfolipase D/química , Fosfolipase D/metabolismo , Transdução de Sinais
15.
EMBO J ; 41(17): e110698, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844135

RESUMO

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Assuntos
1-Fosfatidilinositol 4-Quinase , Fosfolipase D , GTP Fosfo-Hidrolases/metabolismo , Complexo de Golgi/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Fosfolipase D/metabolismo
16.
Biotechnol Appl Biochem ; 69(5): 1917-1928, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34585426

RESUMO

A phospholipase D high producing strain with transphosphatidylation activity that is suitable for phosphatidylserine synthesis was screened by our laboratory and named as Streptomyces cinnamoneum SK43.003. The enzyme structural and biochemical properties were investigated using the molecular biology method. A 1521-bp fragment of the phospholipase D gene from Streptomyces cinnamoneum SK43.003 was amplified by PCR and encoded for 506 amino acids. The primary structure contained two conserved HKD and GG/S motifs. The pld gene was cloned and expressed in Escherichia coli. The purified enzyme exhibited the highest activity at a pH value of 6.0 andtemperature of 60°C. The enzyme was stable within a pH range of 4-7 for 24 h or at temperatures below 50°C. In addition, Triton X-100, Fe2+ , and Al3+ were beneficial to the enzyme activity, whereas Zn2+ and Cu2+ dramatically inhibited its activity. In a two-phase system, the enzyme could convert phosphatidylcholine to phosphatidylserine with a 92% transformation rate.


Assuntos
Fosfolipase D , Streptomyces , Streptomyces/genética , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Fosfatidilserinas , Escherichia coli/genética
17.
Toxins (Basel) ; 15(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668837

RESUMO

Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.


Assuntos
Fosfolipase D , Picada de Aranha , Venenos de Aranha , Aranhas , Trombocitopenia , Animais , Hemólise , Diester Fosfórico Hidrolases/toxicidade , Fosfolipase D/química , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Isoformas de Proteínas , Aranhas/química , Picada de Aranha/complicações
18.
ACS Chem Biol ; 16(12): 2798-2807, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825823

RESUMO

The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.


Assuntos
Proteínas Reguladoras de Apoptose/química , Astrócitos/química , Diabetes Mellitus Tipo 2/metabolismo , Fragmentos de Peptídeos/química , Fosfolipase D/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Transporte Biológico , Microambiente Celular , Glucose , Humanos , Resistência à Insulina , Ligantes , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Termodinâmica
19.
Int J Biol Macromol ; 192: 757-770, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634338

RESUMO

Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.


Assuntos
Aranha Marrom Reclusa , Proteínas Mutantes/imunologia , Fosfolipase D/imunologia , Picada de Aranha/imunologia , Picada de Aranha/terapia , Vacinas/imunologia , Acidentes , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antivenenos/sangue , Antivenenos/imunologia , Biomarcadores , Modelos Animais de Doenças , Imunogenicidade da Vacina , Contagem de Leucócitos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Testes de Neutralização , Fosfolipase D/química , Fosfolipase D/genética , Coelhos , Picada de Aranha/diagnóstico , Picada de Aranha/prevenção & controle , Venenos de Aranha/imunologia , Relação Estrutura-Atividade , Resultado do Tratamento , Vacinação , Vacinas/administração & dosagem
20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638918

RESUMO

Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase D/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Fosfatidilcolinas/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Fosfolipídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...