Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
PLoS One ; 19(6): e0295098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837957

RESUMO

Artificial light at night (ALAN) is negatively impacting numerous species of nocturnally active birds. Nocturnal positive phototaxis, the movement towards ALAN, is exhibited by many marine birds and can result in stranding on land. Seabird species facing major population declines may be most at risk. Leach's Storm-Petrels (Hydrobates leucorhous) are small, threatened seabirds with an extensive breeding range in the North Atlantic and North Pacific Oceans. The Atlantic population, which represents approximately 40-48% of the global population, is declining sharply. Nocturnal positive phototaxis is considered to be a key contributing factor. The Leach's Storm-Petrel is the seabird species most often found stranded around ALAN in the North Atlantic, though there is little experimental evidence that reduction of ALAN decreases the occurrence of stranded storm-petrels. During a two-year study at a large, brightly illuminated seafood processing plant adjacent to the Leach's Storm-Petrel's largest colony, we compared the number of birds that stranded when the lights at the plant were on versus significantly reduced. We recorded survival, counted carcasses of adults and juveniles, and released any rescued individuals. Daily morning surveys revealed that reducing ALAN decreased strandings by 57.11% (95% CI: 39.29% - 83.01%) per night and night surveys revealed that reducing ALAN decreased stranding of adult birds by 11.94% (95% CI: 3.47% - 41.13%) per night. The peak stranding period occurred from 25 September to 28 October, and 94.9% of the birds found during this period were fledglings. These results provide evidence to support the implementation of widespread reduction and modification of coastal artificial light as a conservation strategy, especially during avian fledging and migration periods.


Assuntos
Aves , Iluminação , Animais , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Fototaxia , Luz , Migração Animal/fisiologia , Oceano Atlântico
2.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699809

RESUMO

Mayflies are typically negatively phototactic during larval development, whereas the adults possess positive phototaxis. However, no extensive research has been done into the wavelength dependence of phototaxis in any mayfly larvae. We measured the repellency rate of Ephoron virgo larvae to light as a function of wavelength in the 368-743 nm spectral range. We established that the magnitude of repellence increased with decreasing wavelength and the maximal responses were elicited by 400 nm violet light. This wavelength dependence of phototaxis is similar to the recently reported spectral sensitivity of positive phototaxis of the twilight-swarming E. virgo adults. Negative phototaxis not only facilitates predation evasion: avoidance of the blue-violet spectral range could also promote the larvae to withdraw towards the river midline in the case of a drop in the water level, when the underwater light becomes enriched with shorter wavelengths as a result of the decreasing depth of overhead river water.


Assuntos
Larva , Luz , Fototaxia , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fototaxia/fisiologia , Ephemeroptera/fisiologia
3.
Soft Matter ; 20(19): 3996-4006, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687507

RESUMO

Phototaxis, the directed motion in response to a light stimulus, is crucial for motile microorganisms that rely on photosynthesis, such as the unicellular microalga Chlamydomonas reinhardtii. It is well known that microalgae adapt to ambient light stimuli. On time scales of several dozen minutes, when stimulated long enough, the response of the microalga evolves as if the light intensity were decreasing [A. Mayer, Chlamydomonas: Adaptation phenomena in phototaxis, Nature, 1968, 217(5131), 875-876]. Here, we show experimentally that microalgae also have a short-term memory, on the time scale of a couple of minutes, which is the opposite of adaptation. At these short time scales, when stimulated consecutively, the response of C. reinhardtii evolves as if the light intensity were increasing. Our experimental results are rationalized by the introduction of a simplified model of phototaxis. Memory comes from the interplay between an internal biochemical time scale and the time scale of the stimulus; as such, these memory effects are likely to be widespread in phototactic microorganisms.


Assuntos
Chlamydomonas reinhardtii , Fototaxia , Chlamydomonas reinhardtii/fisiologia , Luz , Microalgas/fisiologia , Memória de Curto Prazo , Modelos Biológicos
4.
Biomolecules ; 14(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540747

RESUMO

Age-dependent changes in the transcription levels of 5-day-old Euglena gracilis cells, which showed positive gravitaxis, 6-day-old cells without gravitactic orientation, and older cells (9- and 11-day-old, which displayed a precise negative gravitaxis) were determined through microarray analysis. Hierarchical clustering of four independent cell cultures revealed pronounced similarities in transcription levels at the same culture age, which proves the reproducibility of the cultivation method. Employing the non-oriented cells from the 6-day-old culture as a reference, about 2779 transcripts were found to be differentially expressed. While positively gravitactic cells (5-day-old culture) showed only minor differences in gene expression compared to the 6-day reference, pronounced changes of mRNAs (mainly an increase) were found in older cells compared to the reference culture. Among others, genes coding for adenylyl cyclases, photosynthesis, and metabolic enzymes were identified to be differentially expressed. The investigated cells were grown in batch cultures, so variations in transcription levels most likely account for factors such as nutrient depletion in the medium and self-shading. Based on these findings, a particular transcript (e.g., transcript 19556) was downregulated using the RNA interference technique. Gravitaxis and phototaxis were impaired in the transformants, indicating the role of this transcript in signal transduction. Results of the experiment are discussed regarding the increasing importance of E. gracilis in biotechnology as a source of valuable products and the possible application of E. gracilis in life-support systems.


Assuntos
Euglena gracilis , Euglena gracilis/genética , Reprodutibilidade dos Testes , Fototaxia , Fotossíntese , Transdução de Sinais
5.
Gene ; 897: 148059, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043833

RESUMO

Common ancestor of vertebrates had four cone opsin subfamilies to obtain color vision: ultraviolet-sensitive (SWS1), blue-sensitive (SWS2), middle wavelength sensitive (RH2) and long wavelength sensitive (LWS). Nevertheless, eutherian mammals had lost the SWS2 and RH2 opsins during their nocturnal lifestyle. Many studies had demonstrated the role of SWS1 and LWS cones in feeding, mate choice and skin pigment cell formation. However, the role of SWS2 and RH2 cones remain elusive. In the present study, we used an ideal model visual system, zebrafish, which still have the four cone opsins, to generate a SWS2 knockout zebrafish line. Through various behavioral test, we found that sws2-/- zebrafish larvae exhibited increased food intake compared with WT. Additionally, there were significantly increased the gene expression of phototransduction pathways in sws2-/- zebrafish larvae. Compared to WT, mutant zebrafish showed weaker phototaxis of red light and changed sensitivity of yellow, red and blue lights. But both mutant and WT zebrafish preferred the red light than other wavelengths of light. Taken together, we proposed that SWS2 cone is not necessary for feeding and phototaxis in zebrafish.


Assuntos
Opsinas , Fototaxia , Peixe-Zebra , Animais , Mamíferos/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Insect Mol Biol ; 33(1): 81-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815404

RESUMO

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.


Assuntos
Mariposas , Receptores Odorantes , Masculino , Animais , Spodoptera/genética , Spodoptera/metabolismo , Fototaxia , Sequência de Aminoácidos , Mariposas/genética , Larva/genética , Larva/metabolismo , Reprodução , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
7.
Environ Entomol ; 53(1): 50-56, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983130

RESUMO

Arthropods use a variety of environmental cues to navigate between and locate hosts. In agricultural systems, clarifying the relevant cues and their effects on arthropod behavior can inform management practices to reduce or inhibit the activity of arthropod pests. The lesser mealworm Alphitobius diaperinus (Panzer) is a ubiquitous arthropod pest of broiler house chicken production, and while the patterns of movement and behavior of A. diaperinus are well documented, the specific environmental factors that govern these patterns are not known. We conducted behavioral assays testing the response of A. diaperinus adults and larvae to different wavelengths of light and to the presence of water. Alphitobius diaperinus displayed a significant repulsion from white, green, red, and blue light, while larvae consistently sought shelter and displayed no behavioral change in response to light. Dehydrated adult beetles displayed an attraction to water while hydrated beetles displayed a repulsion to water. Regardless of the availability of water, dehydrated beetles displayed a reduced repulsion from light. Taken together, these results indicate that A. diaperinus will hide from sources of light unless they are dehydrated. Knowledge of the environmental cues that influence the behavior of A. diaperinus could be used to improve methods of trapping, monitoring, and controlling populations of A. diaperinus in experimental and commercial settings.


Assuntos
Besouros , Tenebrio , Animais , Galinhas , Fototaxia , Larva , Água
8.
Bioresour Technol ; 394: 130241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142911

RESUMO

Rotifer reproduction control in open microalgae cultivation systems poses a significant challenge for large-scale industries. Conventional methods, such as electric, meshing, and chemical techniques, are often expensive, ineffective, and may have adverse environmental-health impacts. This study investigated a promising control technique through light-induced phototaxis to concentrate rotifers in a specific spot, where they were electroshocked by local-limited exposure dose. The results showed that the rotifers had the most pronounced positive and negative phototropism with phototaxis rates of 66.7 % and -78.8 %, respectively, at blue-light irradiation of 30 µmol∙m-2∙s-1 and red-light irradiation of 22.5 µmol∙m-2∙s-1 for 20 min. The most effective electroshock configuration employed 1200 V/cm for 15 min with a 1-second cycle time and a 10 % duty cycle, resulting in a 75.0 % rotifer removal rate without impacting microalgae growth. The combination of the two light beams could effectively lead rotifers to designated areas where they were electrocuted successfully.


Assuntos
Microalgas , Lagoas , Fototaxia , Eletrochoque , Luz Azul , Biomassa
9.
Biochemistry (Mosc) ; 88(10): 1555-1570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105024

RESUMO

Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.


Assuntos
Optogenética , Fototaxia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Luz , Transporte de Íons
10.
Aquat Toxicol ; 265: 106762, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000135

RESUMO

Animal-based sensors have been increasingly applied to many water monitoring systems and ecological studies. One of the staple organisms used as living sensors for such systems is Daphnia. This organism has been extensively studied and, with time, used in many toxicological and pharmaceutical bioassays, often used for exploring the ecology of freshwater communities. One of its behaviours used for evaluating the state of the aquatic environment is phototaxis. A disruption in the predicted behaviour is interpreted as a sign of stress and forms the basis for further investigation. However, phototaxis is a result of complex processes counteracting and interacting with each other. Predator presence, food quality, body pigmentation and other factors can greatly affect the predicted phototactic response, hampering its reliability as a bioindicator. Therefore, a holistic approach and meticulous documentation of the methods are needed for the correct interpretation of this behavioural indicator. In this review, we present the current methods used for studying phototaxis, the factors affecting it and proposed ways to optimise the reliability of the results.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Fototaxia , Reprodutibilidade dos Testes , Daphnia/fisiologia
11.
Sci Rep ; 13(1): 17857, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857737

RESUMO

Photosymbiotic cnidarians generally seek bright environments so that their symbionts can be photosynthetically active. However, excess light may result in a breakdown of symbiosis due to the accumulation of photodamage in symbionts causing symbiont loss (bleaching). It is currently unknown if photosymbiotic cnidarians sense light only to regulate spawning time and to facilitate predation, or whether they also use their light-sensing capacities to protect their symbionts from photodamage. In this study, we examined how the sea anemone Aiptasia changes its behaviour when exposed to excess light. We reveal that Aiptasia polyps, when carrying symbionts, contract their bodies when exposed to high light intensities and subsequently migrate away in a direction perpendicular to the light source. Interestingly, this negative phototaxis was only evident under blue light and absent upon UV, green and red light exposure. Non-symbiotic Aiptasia did not exhibit this light response. Our study demonstrates that photosymbiotic Aiptasia polyps display negative phototactic behaviour in response to blue light, and that they also can perceive its direction, despite lacking specialized eye structures. We postulate that Aiptasia uses blue light, which penetrates seawater efficiently, as a general proxy for sunlight exposure to protect its symbionts from photodamage.


Assuntos
Dinoflagellida , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/fisiologia , Fototaxia , Fotossíntese , Luz , Simbiose , Dinoflagellida/fisiologia
12.
Sci Rep ; 13(1): 14726, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679373

RESUMO

Division of labor is a hallmark characteristic of social insect colonies. While it is understood that worker differentiation is regulated through either the queen or her brood, the understanding of the physiology behind task regulation varies within social species. Studies in eusocial insects have shown that juvenile hormone (JH) is associated with division of labor and the onset of foraging tasks. Although, outside of a few key species, this interaction has yet to be elucidated in the red imported fire ant, Solenopsis invicta. In this study, we evaluated the role of a JH analog, S-hydroprene in worker task transition in Solenopsis invicta. S-hydroprene was applied to nurses to observe behavioral changes. S-hyroprene application to nurses did not affect phototaxis, but there was a shift in behavior from internal, nest-based behaviors to external, foraging-based behaviors. These results show that JH may be implicated in worker task transition in S. invicta and may function similarly as it does in other eusocial insects.


Assuntos
Formigas , Trabalho de Parto , Humanos , Feminino , Animais , Gravidez , Hormônios Juvenis/farmacologia , Fototaxia
13.
Plant Signal Behav ; 18(1): 2257348, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37724547

RESUMO

Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the various endosymbiotic events in their evolutionary history. Carotenoids such as astaxanthin, diadinoxanthin, and fucoxanthin are unique to algae. In microalgae, carotenoids are concentrated in the eyespot, a pigmented organelle that is important for phototaxis. A wide range of microalgae, including chlorophytes, euglenophytes, ochrophytes, and haptophytes, have an eyespot. In the chlorophyte Chlamydomonas reinhardtii, carotenoid layers in the eyespot reflect light to amplify the photosignal and shield photoreceptors from light, thereby enabling precise phototaxis. Our recent research revealed that, in contrast to the ß-carotene-rich eyespot of C. reinhardtii, the euglenophyte Euglena gracilis relies on zeaxanthin for stable eyespot formation and phototaxis. In this review, we highlight recent advancements in the study of eyespot carotenoids and phototaxis in these microalgae, placing special emphasis on the diversity of carotenoid-dependent visual systems among microalgae.


Assuntos
Carotenoides , Microalgas , Fototaxia , Terpenos , beta Caroteno
14.
Sci Rep ; 13(1): 9562, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308664

RESUMO

The parasitoid wasp Bathyplectes anurus (Hymenoptera: Ichneumonidae: Campopleginae) is a successful biocontrol agent against the alfalfa weevil, Hypera postica. This weevil is a serious pest of beneficial fabaceous plants such as alfalfa and Chinese milk vetch. One of the possible reasons for the success of this wasp in hot climates may be the ability of its cocooned larvae to repeatedly jump and roll until they relocate themselves away from detrimental sunlight and heat. It is not yet known which wavelengths of light trigger this avoidance behavior or the microstructure of the cocoon shell that might allow light transmission. Here, the response of the cocooned larvae to different wavelengths, and the microstructure, hardness, and elemental components of the cocoon shell were studied. A population of cocooned larvae were introduced on the boundary line between illuminated and shaded areas with blue, green, red, or near-infrared light-emitting diodes. The cocoons moved away from the blue and green light. The distance from the boundary to the cocoons in the shaded area was longer under these long wavelengths, followed by the red light and shortest under the near-infrared light and nil under darkness. No difference was found in mortality between different wavelengths after three days of illumination. Scanning electron microscope observations of the surface of the cocoon shell revealed that the belt-like central ridge was porous, which likely allows ventilation and light transmission. The surface of the cocoon shell showed a uniform distribution of sulfur, potentially aiding in the capture of green wavelengths. The ridge had twice the thickness of the main body and was 1.9 times harder than the main body. These results may be applied to better understand the individual responses of this biological control agent to modifications to their environment, including light pollution.


Assuntos
Fototaxia , Vespas , Animais , Raios Infravermelhos , Larva , Medicago sativa
15.
Zoolog Sci ; 40(3): 203-207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256567

RESUMO

Different crustacean species can differ in their response to light. In Tanaidacea, a small group of aquatic, benthic crustaceans, previous studies suggested that several species may be positively phototactic based on their attraction to nocturnal light traps, but no experimental investigations of phototaxis had been conducted on this group. Here we show experimentally that two species in the genus Zeuxo are phototactic but exhibit opposite reactions to light; Zeuxo ezoensis, which inhabits the blades and stipes of seaweeds, was positively phototactic, whereas Zeuxo molybi, which inhabits muddy sediments overlying bedrock, was negatively phototactic. This differential response may reflect differences in photoenvironment between these species' microhabitats.


Assuntos
Fototaxia , Água , Animais , Crustáceos
16.
Phys Rev E ; 107(1-1): 014404, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797913

RESUMO

A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.


Assuntos
Chlamydomonas , Clorófitas , Volvox , Filogenia , Fototaxia , Evolução Biológica
17.
Plant Physiol ; 191(4): 2414-2426, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611254

RESUMO

The eyespot apparatus is an organelle that forms carotenoid-rich globules in diverse flagellated microalgae and functions in phototaxis. The euglenophytes have structurally and functionally distinct eyespot apparatuses from chlorophytes. ß-Carotene is the most abundant pigment detected in chlorophytes' eyespots, while xanthophylls such as zeaxanthin and diadinoxanthin have been suggested to function in euglenophytes' eyespots. Here, we investigated the association between carotenoid composition and eyespot formation via pathway-scale mutagenesis using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing in the euglenophyte Euglena gracilis. Lycopene cyclase (lcy) mutants exhibited sole lycopene accumulation, defective red eyespots, and phototactic insensitivity. Conversely, ß-carotene hydroxylase (cytochrome P450 97h1, cyp97h1) mutants accumulated ß-carotene and its hydroxylated products ß-cryptoxanthin and zeaxanthin and formed phototactic eyespot apparatuses, while cyp97h1 cyp97f2 double mutants were deficient in ß-carotene hydroxylation and mostly lacked functional eyespots. Thus, zeaxanthin is required for the stable formation of functional eyespots in E. gracilis, highlighting evolutionary differences between euglenophytes and chlorophytes in the metabolic regulation of photoreactive organelle formation.


Assuntos
Euglena gracilis , beta Caroteno , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , Euglena gracilis/genética , Fototaxia , Carotenoides/metabolismo , Organelas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
18.
Ecotoxicol Environ Saf ; 251: 114519, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634478

RESUMO

Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.


Assuntos
Citrus , Hemípteros , Animais , Fototaxia , Hemípteros/genética , Hemípteros/metabolismo , Transcriptoma , Luz , Citrus/genética , Encéfalo
19.
Acta Biomater ; 155: 386-399, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280031

RESUMO

Cyanobacteria respond to light stimulation, activating localised assembly of type IV pili for motility. The resulting phototactic response is highly dependent on the nature of the incoming light stimulus, and the final motility parameters depend on the surface properties. Conventionally, phototaxis studies are carried out on hydrogel surfaces, such as agarose, with surface properties that vary in time due to experimental conditions. This study considers five substrates, widely utilized in microfluidic technology, to identify the most suitable alternative for performing reliable and repeatable phototaxis assays. The surfaces are characterised via a contact angle goniometer to determine the surface energy, white light interferometry for roughness, zeta-potentials and AFM force distance curves for charge patterns, and XPS for surface composition. Cell motility assays showed 1.25 times increment on surfaces with a water contact angle of 80° compared to a reference glass surface. To prove that motility can be enhanced, polydimethylsiloxane (PDMS) surfaces were plasma treated to alter their surface wettability. The motility on the plasma-treated PDMS showed similar performance as for glass surfaces. In contrast, untreated PDMS surfaces displayed close to zero motility. We also describe the force interactions of cells with the test surfaces using DLVO (Derjaguin-Landau-Verwey-Overbeek) and XDLVO (extended DLVO) theories. The computed DLVO/XDLVO force-distance curves are compared with those obtained using atomic force microscopy. Our findings show that twitching motility on tested surfaces can be described mainly from adhesive forces and hydrophobicity/hydrophilicity surface properties. STATEMENT OF SIGNIFICANCE: The current article focuses on unravelling the potential Micro-Electro-Mechanical System (MEMS) compatible surfaces for studying phototactic twitching motility of cyanobacteria. This is the first exhaustive surface characterization study coupled with phototaxis experiments, to understand the forces contributing to twitching motility. The methods shown in this paper can be further extended to study other surfaces and also to other bacteria exhibiting twitching motility.


Assuntos
Cianobactérias , Fototaxia , Propriedades de Superfície , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas
20.
Sci Total Environ ; 856(Pt 2): 159042, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174704

RESUMO

The role of serotonin in Daphnia magna phototactic and locomotor behavior was assessed using reverse genetics and pharmacological treatments with serotonin and fluoxetine. The study was conducted with four clones: the wild type clone and three CRISPR D. magna ones with mutations in the tryptophan hydrolase gene (TRH) that is involved in serotonin synthesis. These included clones TRHA- and TRHB- with mutations in both alleles that lack serotonin and the mono-allelic mutant TRH+, that has serotonin. Obtained results indicated that animals lacking serotonin showed an increased negative phototactism and locomotor activity upon light stimuli and a reduced response to fish kairomones relative to the wild type and TRH+ individuals. Exposure to exogenous serotonin re-established the phototactism and locomotor activity of TRH- individuals to those of the wild type but did not affect phototactic responses to fish kairomones. Unexpectedly, fluoxetine was able to modify locomotor activity and phototactic behavior against fish kairomones in TRH- individuals lacking serotonin, and also it increased the concentrations of acethylcholine and GABA in exposed animals, which support the argument that fluoxetine may also affect other neurological pathways.


Assuntos
Daphnia , Serotonina , Animais , Daphnia/fisiologia , Fluoxetina , Fototaxia , Peixes , Feromônios , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...