Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127966

RESUMO

Shale is a kind of sedimentary rock with an obvious bedding structure. The effect of the bedding plane on hydraulic fracture initiation, propagation, and complex fracture network formation is remarkable and a major problem in hydraulic fracturing and shale oil and gas development. In this study, a criterion is established to predict the evolution behavior of hydraulic fractures (HF) under different confining pressure differences and intersection angles. This criterion is intended to predict the types of interaction between HFs and bedding planes (BPs): penetrating, slipping, or dilating. The dependence of crossing on the intersection angle and the principal stress difference is quantitatively presented using the criterion. Meanwhile, 20 simulations with principal stress differences of 2, 4, 6, and 8 MPa and intersection angles of 30°, 45°, 60°, 75°, and 90° were simulated using the RFPA2D-Flow code. Simulation results exhibit good agreement with the criterion results for a wide range of angles. The investigation showed that HFs tend to penetrate BPs under high confining pressure differences and intersection angles and open BPs under low confining pressure differences and intersection angles. In addition to the above two forms, HFs slip due to shear. The criterion can provide relevant reference about the formation of complex fracture networks in shale layers.


Assuntos
Fraturamento Hidráulico , Gás Natural , Fraturamento Hidráulico/métodos , Minerais
2.
J Environ Public Health ; 2022: 5833491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967475

RESUMO

Hydraulic fracturing, as an oil-water well stimulation and injection technology, is particularly important in the production and stimulation of low-permeability oil and gas fields, and the performance of the fracturing fluid directly affects the success of the fracturing operation. Compared with traditional water-based fracturing fluids, clean fracturing fluids have the advantages of strong sand-carrying ability and easy gel breaking with no residue. Aiming at the problem of poor temperature resistance and shear resistance of the clean fracturing fluid, based on previous research, this paper selects a high-temperature-resistant clean fracturing fluid system and evaluates the performance of the system. The research results show that the system has better rheological properties, better sand-carrying performance, shorter gel-breaking time, and less damage to the reservoir.


Assuntos
Fraturamento Hidráulico , Areia , Fraturamento Hidráulico/métodos , Reologia , Temperatura , Água
3.
Comput Intell Neurosci ; 2022: 7593526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602635

RESUMO

As a key technology for tight gas stimulation, refracturing plays an important role in tight gas development. In the production process of tight gas wells, the reservoir or fracturing process may cause the hydraulic fractures to gradually fail and the production to continuously decrease. In order to restore the productivity of a single well, it is necessary to refract the well to reopen the failed fractures or fracturing. Reasonable refracturing timing and optimization of refract fracture parameters are important guarantees to ensure the benefits of refracturing in tight gas wells, and relevant research on it can provide theoretical and technical guidance for field construction design. Based on the inverse problem of the dynamic prediction model of tight gas well productivity, this paper proposes an inversion method of formation and fracture parameters before refracturing based on Bayesian inversion algorithm. Finally, based on the geology and development data of the fractured wells in the Sulige gas field, the field application of refracting well selection, determination of refracting reasonable timing, and prediction of refracting effect is carried out. The actual production data are compared, and it is shown that this method can provide theoretical guidance for high-efficiency production-increasing construction on-site.


Assuntos
Fraturamento Hidráulico , Campos de Petróleo e Gás , Algoritmos , Teorema de Bayes , Fraturamento Hidráulico/métodos
4.
PLoS One ; 16(12): e0260786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855902

RESUMO

Hydraulic fracturing of unconventional reservoirs has seen a boom in the last century, as a means to fulfill the growing energy demand in the world. The fracturing fluid used in the process plays a substantial role in determining the results. Hence, several research and development efforts have been geared towards developing more sustainable, efficient, and improved fracturing fluids. Herein, we present a dynamic binary complex (DBC) solution, with potential to be useful in the hydraulic fracturing domain. It has a supramolecular structure formed by the self-assembly of low molecular weight viscosifiers (LMWVs) oleic acid and diethylenetriamine into an elongated entangled network under alkaline conditions. With less than 2 wt% constituents dispersed in aqueous solution, a viscous gel that exhibits high viscosities even under shear was formed. Key features include responsiveness to pH and salinity, and a zero-shear viscosity that could be tuned by a factor of ~280 by changing the pH. Furthermore, its viscous properties were more pronounced in the presence of salt. Sand settling tests revealed its potential to hold up sand particles for extended periods of time. In conclusion, this DBC solution system has potential to be utilized as a smart salt-responsive, pH-switchable hydraulic fracturing fluid.


Assuntos
Indústrias Extrativas e de Processamento/métodos , Fraturamento Hidráulico/métodos , Gás Natural/análise , Ácido Oleico/química , Poliaminas/química , Salinidade , Concentração de Íons de Hidrogênio , Campos de Petróleo e Gás/química , Reologia , Viscosidade
5.
PLoS One ; 16(8): e0255793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407089

RESUMO

For staged multi-cluster fracturing, methods for controlling perforation friction to adjust the flow distribution of each cluster can effectively promote the uniform extension of multiple fractures but lacks a fast and quantitative optimization method for different perforation parameters of each cluster. By establishing a numerical model of single-stage three-cluster flow-limited fracturing under stress-seepage coupling, and based on the response surface optimization method, fully considering the impact of perforation parameters interaction among three perforation clusters, according to the regression equation fitted under the global response, the rapid optimization of perforation parameters of segmented multi-cluster fracturing model is realized. The results show that: in determining the three factors of the study, it is found that there is an obvious interaction between the number of intermediate cluster perforations and the number of cluster perforations on both sides, the number of cluster perforations on both sides and the diameter of intermediate cluster perforations, the response surface optimization method gives the optimal perforation parameter combination of three clusters of fractures under global response; When the perforation parameters were combined before optimization, the fracture length difference was 32.550m, and the intermediate perforation cluster evolved into invalid perforation cluster, when the perforation parameters were combined after optimization, the fracture length difference was 0.528m, the three perforation clusters spread uniformly, and there are no invalid clusters. At the same time, the regression equation under the response is optimized before and after the comparison between the predicted value of the equation and the actual simulation value. It is found that the estimated deviation rate of the equation before optimization is 1.2%, and the estimated deviation rate after optimization is 0.4%. The estimated deviation rates are all less, and the response regression equation based on the response surface optimization method can quickly optimize the perforation parameters. The response surface optimization method is suitable for the multi parameter optimization research of formation fracturing which is often affected by many geological and engineering factors. Combining with the engineering practice and integrating more factors to optimize the hydraulic fracturing parameters, it is of great significance to improve the success rate of hydraulic fracturing application.


Assuntos
Fraturamento Hidráulico/métodos , Gás Natural , Fenômenos Geológicos
6.
PLoS One ; 16(6): e0252277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166372

RESUMO

The distribution of multiscale pores and fractures in coal and rock is an important basis for reflecting the capacity of fluid flow in coal seam seepage passages. Accurate extraction and qualitative and quantitative analysis of pore-fracture structures are helpful in revealing the flow characteristics of fluid in seepage channels. The relationship between pore and fracture connectivity can provide a scientific reference for optimizing coal seam water injection parameters. Therefore, to analyse the change in permeability caused by the variability in the coal pore-fracture network structure, a CT scanning technique was used to scan coal samples from the Leijia District, Fuxin. A total of 720 sets of original images were collected, a median filter was used to filter out the noise in the obtained images, and to form the basis of a model, the reconstruction and analysis of the three-dimensional pore-fracture morphology of coal samples were carried out. A pore-fracture network model of the coal body was extracted at different scales. Using the maximum sphere algorithm combined with the coordination number, the effect of different quantitative relationships between pore size and pore throat channel permeability was studied. Avizo software was used to simulate the flow path of fluid in the seepage channels. The change trend of the fluid velocity between different seepage channels was discussed. The results of the pore-fracture network models at different scales show that the pore-fracture structure is nonuniform and vertically connected, and the pores are connected at connecting points. The pore size distribution ranges from 104 µm to 9425 µm. The pore throat channel length distribution ranges from 4206 µm to 48073 µm. The size of the coordination number determines the connectivity and thus the porosity of the coal seam. The more connected pore channels there are, the larger the pore diameters and the stronger the percolation ability. During flow in the seepage channels of the coal, the velocity range is divided into a low-speed region, medium-speed region and high-speed region. The fluid seepage in the coal seam is driven by the following factors: pore connectivity > pore and pore throat dimensions > pore and pore throat structure distribution. Ultimately, the pore radius and pore connectivity directly affect the permeability of the coal seam.


Assuntos
Algoritmos , Carvão Mineral , Simulação por Computador , Fraturamento Hidráulico/métodos , Tomografia Computadorizada por Raios X/métodos , Movimentos da Água , Porosidade
7.
PLoS One ; 16(4): e0250791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930038

RESUMO

As oil production in the Permian Basin surges, the impact of shale production on groundwater resources has become a growing concern. Most existing studies focus on the impact of shale production on shallow freshwater aquifers. There is little understanding of the shale development's impact on other groundwater resources (e.g., deep carbonate aquifers and deep basin meteoric aquifers). The possible natural hydraulic connections between shallow aquifers and formation water suggest such an impact can be consequential. This study explores the relationship between shale production and groundwater using produced water (PW) samples from active unconventional oil wells. Focusing on the most productive portion of the Permian Basin-the four-county region in Southeast New Mexico between 2007 and 2016, a large produced water dataset allows us to analyze the conditional correlations between shale oil production and PW constituents. The results suggest that (1) expanding from primarily conventional wells to unconventional wells during the recent shale boom has led to dramatic increases of the TDS, chloride, sodium, and calcium levels in groundwater (i.e., producing formation). (2) Nearby oil well density positively correlates with the TDS, chloride, and sodium levels in the PW samples.


Assuntos
Água Subterrânea/química , Fraturamento Hidráulico/métodos , Minerais/análise , Gás Natural/análise , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/análise , New Mexico
8.
Toxicol Appl Pharmacol ; 409: 115300, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33141058

RESUMO

Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Areia/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Aerossóis/efeitos adversos , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Poeira , Monitoramento Ambiental/métodos , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Ratos , Ratos Sprague-Dawley
9.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068619

RESUMO

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Células Epiteliais/efeitos dos fármacos , Fraturamento Hidráulico/métodos , Masculino , Cloreto de Metacolina/farmacologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Traqueia/efeitos dos fármacos
10.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068622

RESUMO

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Areia/química , Silicose/etiologia , Traqueia/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Poeira , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Quartzo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/efeitos adversos
11.
Sci Rep ; 10(1): 15416, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963276

RESUMO

Hydraulic fracturing is often criticized due in part to the potential degradation of ground and surface water quality by high-salinity produced water generated during well stimulation and production. This preliminary study evaluated the response of the freshwater mussel, Elliptio complanata, after exposure to produced water. A limited number of adult mussels were grown over an 8-week period in tanks dosed with produced water collected from a hydraulically fractured well. The fatty tissue and carbonate shells were assessed for accumulation of both inorganic and organic pollutants. Ba, Sr, and cyclic hydrocarbons indicated the potential to accumulate in the soft tissue of freshwater mussels following exposure to diluted oil and gas produced water. Exposed mussels showed accumulation of Ba in the soft tissue several hundred times above background water concentrations and increased concentrations of Sr. Cyclic hydrocarbons were detected in dosed mussels and principle component analysis of gas chromatograph time-of-flight mass spectrometer results could be a novel tool to help identify areas where aquatic organisms are impacted by oil and gas produced water, but larger studies with greater replication are necessary to confirm these results.


Assuntos
Bário/efeitos adversos , Bivalves/efeitos dos fármacos , Água Doce/química , Hidrocarbonetos Cíclicos/efeitos adversos , Estrôncio/efeitos adversos , Água/química , Animais , Fraturamento Hidráulico/métodos , Alimentos Marinhos , Poluentes Químicos da Água/efeitos adversos
12.
Molecules ; 25(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932649

RESUMO

The desire to improve hydraulic fracture complexity has encouraged the use of thermochemical additives with fracturing fluids. These chemicals generate tremendous heat and pressure pulses upon reaction. This study developed a model of thermochemical fluids' advection-reactive transport in hydraulic fractures to better understand thermochemical fluids' penetration length and heat propagation distance along the fracture and into the surrounding porous media. These results will help optimize the design of this type of treatment. The model consists of an integrated wellbore, fracture, and reservoir mass and heat transfer models. The wellbore model estimated the fracture fluid temperature at the subsurface injection interval. The integrated model showed that in most cases the thermochemical fluids were consumed within a short distance from the wellbore. However, the heat of reaction propagated a much deeper distance along the hydraulic fracture. In most scenarios, the thermochemical fluids were consumed within 15 ft from the fracture inlet. Among other design parameters, the thermochemical fluid concentration is the most significant in controlling the penetration length, temperature, and pressure response. The model showed that a temperature increase from 280 to 600 °F is possible by increasing the thermochemical concentration. Additionally, acid can be used to trigger the reaction but results in a shorter penetration length and higher temperature response.


Assuntos
Carbonato de Cálcio/química , Gás Natural , Geologia , Temperatura Alta , Fraturamento Hidráulico/instrumentação , Fraturamento Hidráulico/métodos , Cinética , Campos de Petróleo e Gás , Petróleo/análise , Porosidade , Abastecimento de Água
13.
PLoS One ; 14(11): e0224654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31693692

RESUMO

In order to understand the influence of unloading on the mechanical properties of shale rock, triaxial unloading tests under different stress paths were conducted. In this paper, three types of tests are completed, including: 1) Conventional triaxial compression test;2) Pre-peak constant maximum principal stress-unloading confining pressure test with different initial confining pressures and rates;3) Increasing axial stress-unloading confining pressure test. The deformation and rupture modes characteristics of shale sample under different unloading stress paths were obtained. Research results show that: 1) The confining pressure effect is obvious and the peak strength increases with the increase of initial confining pressure, under conventional triaxial compression test, the samples show obvious elastic-plastic characteristics; Under unloading confining pressure test, it shows obvious elastic brittleness characteristics.2) Compared with conventional triaxial compression test, unloading confining pressure is more prone to deformation and rupture, and the damage is more serious. Under same initial stress level, the brittle characteristics in unloading confining pressure are more obvious and the expansion is more intense. 3) Under same unloading stress path, the higher the initial confining pressure is, the more severe the sample failure is. With the increase of unloading rate, the rupture degree of the sample becomes more complex.4) The brittle rupture characteristic increases with the increase of unloading rate and initial confining pressure. Increasing axial stress-unloading confining pressure, various types of tensile and shear fractures with different mechanisms are well developed. These conclusions reveal loading and unloading mechanical properties of gas-bearing shale under different stress paths; it provides theoretical basis for horizontal drilling, fracturing design and long-term fracturing effect analysis of shale gas reservoirs.


Assuntos
Fraturamento Hidráulico/métodos , Gás Natural , Campos de Petróleo e Gás , Pressão , Estresse Mecânico
14.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444200

RESUMO

Production of unconventional oil and gas continues to rise, but the effects of high-density hydraulic fracturing (HF) activity near aquatic ecosystems are not fully understood. A commonly used biocide in HF, 2,2-dibromo-3-nitrilopropionamide (DBNPA), was studied in microcosms of HF-impacted (HF+) versus HF-unimpacted (HF-) surface water streams to (i) compare the microbial community response, (ii) investigate DBNPA degradation products based on past HF exposure, and (iii) compare the microbial community response differences and similarities between the HF biocides DBNPA and glutaraldehyde. The microbial community responded to DBNPA differently in HF-impacted versus HF-unimpacted microcosms in terms of the number of 16S rRNA gene copies quantified, alpha and beta diversity, and differential abundance analyses of microbial community composition through time. The differences in microbial community changes affected degradation dynamics. HF-impacted microbial communities were more sensitive to DBNPA, causing the biocide and by-products of the degradation to persist for longer than in HF-unimpacted microcosms. A total of 17 DBNPA by-products were detected, many of them not widely known as DBNPA by-products. Many of the brominated by-products detected that are believed to be uncharacterized may pose environmental and health impacts. Similar taxa were able to tolerate glutaraldehyde and DBNPA; however, DBNPA was not as effective for microbial control, as indicated by a smaller overall decrease of 16S rRNA gene copies/ml after exposure to the biocide, and a more diverse set of taxa was able to tolerate it. These findings suggest that past HF activity in streams can affect the microbial community response to environmental perturbation such as that caused by the biocide DBNPA.IMPORTANCE Unconventional oil and gas activity can affect pH, total organic carbon, and microbial communities in surface water, altering their ability to respond to new environmental and/or anthropogenic perturbations. These findings demonstrate that 2,2-dibromo-3-nitrilopropionamide (DBNPA), a common hydraulic fracturing (HF) biocide, affects microbial communities differently as a consequence of past HF exposure, persisting longer in HF-impacted (HF+) waters. These findings also demonstrate that DBNPA has low efficacy in environmental microbial communities regardless of HF impact. These findings are of interest, as understanding microbial responses is key for formulating remediation strategies in unconventional oil and gas (UOG)-impacted environments. Moreover, some DBNPA degradation by-products are even more toxic and recalcitrant than DBNPA itself, and this work identifies novel brominated degradation by-products formed.


Assuntos
Desinfetantes/farmacologia , Microbiota/efeitos dos fármacos , Nitrilas/farmacologia , Ecologia , Fraturamento Hidráulico/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Rios , Águas Residuárias/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Purificação da Água
15.
Environ Sci Pollut Res Int ; 26(19): 19453-19467, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077040

RESUMO

Hydraulic fracturing (fracking) chemicals are used to maximize the extraction of hard-to-reach underground energy resources. Large amounts of fracking fluid could escape to the surrounding environments, including underground and surface water resources, during the chemical mixing stage of the hydraulic fracturing water cycle due to equipment failure or human error. However, the impact of pollution resulting from operational discharges is difficult to assess in aquatic ecosystems. In this study, pathological investigations, chromosomal aberrations, DNA damage, and biochemical and hematological parameters were used to evaluate the effects of such chemicals on Nile tilapia. Chromosomal aberrations are considered very sensitive genetic markers of exposure to genotoxic chemicals and are used as indicators of DNA damage. The appearance of different types of chromosomal aberrations (gaps and breaks) due to chemical exposure was significantly reduced by treatment with spirulina. Various deleterious findings in Nile tilapia, in the current study, could attributed to the presence of fracking chemicals in the aquatic environment. However, the presence of spirulina in the diet reduced the hazards of such chemicals. In addition, cytogenetic studies in the current work revealed the importance of spirulina in ameliorating the genotoxic effects of a mixture of some chemicals used in fracking.


Assuntos
Ração Animal , Ciclídeos , Dano ao DNA , Fraturamento Hidráulico/métodos , Spirulina/química , Poluentes Químicos da Água/toxicidade , Animais , Ciclídeos/genética , Humanos
16.
Environ Sci Pollut Res Int ; 26(20): 20787-20797, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102234

RESUMO

The thickening performance of CO2 fracturing fluid was poor because of the low apparent viscosity. In this paper, the thickening performance of a modified silicone on liquid CO2 is measured, and a rheology was investigated according to the consistency coefficient K and rheological index n. Meanwhile, a reservoir model was established to evaluate the fracturing property. Results showed that the modified silicone contributes to improve the apparent viscosity of liquid CO2 and decrease the rheology of liquid CO2. With the thickener content or pressure increase, the apparent viscosity of liquid CO2 increases, and the rheological index n decreased obviously. A reduced apparent viscosity is shown as the flow rate or temperature rises, but the rheology increased gradually. The fracturing simulation herein shows that thickened CO2 fracturing fluid could improve obviously the fracture property. This modified thickener possesses the potential as a thickener and could be a reliable alternative to the thickener in CO2 fracturing technology, and the large contact angle improved the backflow property of this CO2 thickener from rock surfaces. The development of CO2 fracturing technology provides basic data for the improvement of greenhouse effect and clean mining of energy.


Assuntos
Dióxido de Carbono , Fraturamento Hidráulico/métodos , Modelos Teóricos , Pressão , Reologia/métodos , Silicones/química , Solubilidade , Temperatura , Viscosidade , Molhabilidade
17.
Environ Sci Pollut Res Int ; 26(11): 11458-11469, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30809749

RESUMO

The effective area of hydraulic fracturing is the core index to evaluate its effects. Through conducting transient electromagnetic tests, this paper deals with the influential range of the underground hydraulic fracturing as well as water-cut detection and gas extraction in the fracturing area. The resistivity response law of the coal seam in hydraulic fracturing process is explored, and the water-bearing area is determined. The obtained results from the tests show that the water-cut areas of the coal seam, measured by anti-interference transient electromagnetic instrument after fracturing, are commonly placed in the low-resistance area of the transient test. Further, the variations of amplitude of the low-resistance area in various directions of the test line are different. According to the variation law of the apparent resistivity of the coal seam before and after fracturing, the effective influential area of the hydraulic fracturing is defined, and the influence range is evaluated to be 35 m. The water cut and the gas extraction tests of the coal seam before and after fracturing are performed. The results reveal that the growth of water content in the coal seam is inversely proportional to the distance from the hydraulic fracturing borehole. The effective fracturing zone with the increment of the water content reaching 0.2% is the effective fracturing zone, and the effective fracturing zone of #9 and #10 is 38 m. After hydraulic fracturing, the gas extraction concentration would be in the range of 25.4-75.4%, with the average of 70.22%, which is 21.22% higher than that of the original coal body. The net amount of the gas extraction after fracturing is about eight times of that before fracturing. The effective fracturing range, which is determined by transient electromagnetic, is verified successfully. Exploring the effective fracturing regions of the hydraulic fracturing process would be very helpful in improving the evaluation system of the hydraulic fracturing effect.


Assuntos
Campos Eletromagnéticos , Fraturamento Hidráulico/instrumentação , Fraturamento Hidráulico/métodos , Gás Natural/análise , Carvão Mineral/análise , Água/análise
18.
Public Health Nurs ; 36(1): 3-10, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30298676

RESUMO

OBJECTIVE: Noise associated with nontraditional gas industry (NTGI) sites (e.g., hydraulic fracturing well pads, compressor stations, processing plants) may create disturbances and anxiety in rural populations. This study evaluated levels of concern among residents of Southwestern Pennsylvania residing near NTGI sites. DESIGN: Noise measurements were collected inside and outside residences, and surveys were administered to residents. RESULTS: Daytime instantaneous sound levels ranged between 45.0 and 61.0 dBA. Dosimeter studies recorded day-night levels (Ldn ) of 53.5-69.4 dBA outside and 37.5-50.1 dBA inside, exceeding United States Environmental Protection Agency guidelines. Respondents indicated the NTGI noise disturbed their sleep, and the majority of respondents (96%) reported being worried about their overall health as a result of the noise. CONCLUSIONS: Health care professionals serving rural areas impacted by hydraulic fracturing (fracking) should be aware of potential noise stressors on the populations they serve.


Assuntos
Monitoramento Ambiental/métodos , Fraturamento Hidráulico/métodos , Gás Natural/efeitos adversos , Ruído/efeitos adversos , Estresse Psicológico/patologia , Adulto , Idoso , Feminino , Habitação , Humanos , Masculino , Pessoa de Meia-Idade , Pennsylvania , Inquéritos e Questionários , Estados Unidos , United States Environmental Protection Agency
19.
Chemosphere ; 218: 252-258, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30471506

RESUMO

Colloids and organics in shale gas fracturing flowback water (SGFFW) during shale gas extraction are of primary concerns. Coagulation combined with oxidation might be a promising process for SGFFW treatment. In this study, a novel electrocoagulation-peroxone (ECP) process was developed for SGFFW treatment by simultaneous coagulation and oxidation process with a Al plate as the anode and a carbon-PTFE gas diffusion electrode as the cathode, realizing the simultaneous processes of coagulation, H2O2 generation and activation by O3 at the cathode. Compared with electrocoagulation (EC) and peroxi-electrocoagulation (PEC), COD removal efficiency mainly followed the declining order of ECP, PEC and EC under the optimal current density of 50 mA cm-2. The appearance of medium MW fraction (1919 Da) during ozonation and PEC but disappearance in ECP indicated that these intermediate products couldn't be degraded by ozonation and PEC but could be further oxidized and mineralized by the hydroxyl radical produced by the cathode in ECP, demonstrating the hydroxyl radical might be responsible for the significant enhancement of COD removal. The pseudo-first order kinetic model can well fit ozonation and EC process but not the PEC and ECP process due to the synthetic effect of coagulation and oxidation. However, the proposed mechanism based model can generally fit ECP satisfactorily. The average current efficiency for PEC was 35.4% and 12% higher than that of ozonation and EC, respectively. This study demonstrated the feasibility of establishing a high efficiency and space-saving electrochemical system with integrated anodic coagulation and cathodic electro-peroxone for SGFFW treatment.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrocoagulação/métodos , Fraturamento Hidráulico/métodos , Gás Natural , Compostos Orgânicos/isolamento & purificação , Purificação da Água/métodos , Carbono , Eletrodos , Radical Hidroxila/química , Cinética , Oxirredução , Ozônio , Ácidos Sulfúricos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
20.
J Biosci Bioeng ; 127(1): 45-51, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30082219

RESUMO

In the natural gas field located in central Japan, high concentrations of natural gases and iodide ions are dissolved in formation water and commercially produced in deep aquifers. In the iodine recovery process, the produced formation water is amended with sulfate, and this fluid is injected into gas-bearing aquifers, which may lead to infrastructure corrosion by hydrogen sulfide. In this study, we examined the microbial community in aquifers subjected to sulfate-containing fluid injection. Formation water samples were collected from production wells located at different distances from the injection wells. The chemical analysis showed that the injection fluid contained oxygen, nitrate, nitrite and sulfate, in contrast to the formation water, which had previously been shown to be depleted in these components. Sulfur isotopic analysis indicated that sulfate derived from the injection fluid was present in the sample collected from near the injection wells. Quantitative and sequencing analysis of dissimilatory sulfite reductase and 16S rRNA genes revealed that sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria, and anaerobic methanotrophic archaea (ANME) in the wells located near injection wells were more abundant than those in wells located far from the injection wells, suggesting that fluid injection stimulated these microorganisms through the addition of oxygen, nitrate, nitrite and sulfate to the methane-rich aquifers. The predominant taxa were assigned to the ANME-2 group, its sulfate-reducing partner SEEP-SRB1 cluster and sulfur-oxidizing Epsilonproteobacteria. These results provide important insights for future studies to support the development of natural gas and iodine resources in Japan.


Assuntos
Água Subterrânea/microbiologia , Fraturamento Hidráulico , Microbiota , Gás Natural/microbiologia , Campos de Petróleo e Gás/microbiologia , Sulfatos/química , Archaea/genética , Archaea/isolamento & purificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fraturamento Hidráulico/métodos , Japão , Metano/química , Microbiota/genética , Nitratos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Enxofre/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...