Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Front Immunol ; 13: 818382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154135

RESUMO

Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in the treatment of various autoimmune/inflammatory diseases although its mechanism of action remains elusive. Recently, nonfucosylated IgG has been shown to be preferentially bound to Fcγ receptor IIIa (FcγRIIIa) on circulating natural killer cells; therefore, we hypothesized that nonfucosylated IVIG may modulate immune responses through FcγRIIIa blockade. Here, homogeneous fucosylated or nonfucosylated glycoforms of normal polyclonal IgG bearing sialylated, galactosylated or nongalactosylated Fc oligosaccharides were generated by chemoenzymatic glycoengineering to investigate whether the IgG glycoforms can inhibit antibody-dependent cellular cytotoxicity (ADCC). Among the six IgG glycoforms, galactosylated, nonfucosylated IgG [(G2)2] had the highest affinity to FcγRIIIa and 20 times higher potency to inhibit ADCC than native IgG. A pilot study of IVIG treatment in mice with collagen antibody-induced arthritis highlighted the low-dose (G2)2 glycoform of IVIG (0.1 g/kg) as an effective immunomodulatory agent as the 10-fold higher dose of native IVIG. These preliminary results suggest that the anti-inflammatory activity of IVIG is in part mediated via activating FcγR blockade by galactosylated, nonfucosylated IgG and that such nonfucosylated IgG glycoforms bound to FcγRs on immune cells play immunomodulatory roles in health and disease. This study provides insights into improved therapeutic strategies for autoimmune/inflammatory diseases using glycoengineered IVIG and recombinant Fc.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Artrite/tratamento farmacológico , Imunoglobulinas Intravenosas/farmacologia , Receptores de IgG/imunologia , Rituximab/farmacologia , Animais , Fucose/imunologia , Glicosilação , Humanos , Camundongos , Projetos Piloto
2.
J Microbiol Immunol Infect ; 54(4): 606-615, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32146162

RESUMO

BACKGROUND: The humoral immune response is pivotal to protect the host from Salmonella typhimurium (S. typhimurium) infection. Previously, we found that core fucosylation catalyzed by core fucosyltransferase (Fut8) could regulate the immune responses. However, the role of core fucosylation during S. typhimurium infection remains unclear. METHODS: To demonstrate the role of Fut8 in S. typhimurium infection, we infected Fut8+/+ and Fut8-/- mice using S. typhimurium. The production of antiserum against the S. typhimurium was detected. The expression of T and B cell activation-related genes during S. typhimurium infection was analyzed. The role of core fucosylation on CD4+ T-B cell interaction and B cell generation was investigated during S. typhimurium infection. The production of sIgA was compared between Fut8+/+ and Fut8-/- mice. RESULTS: Compared to Fut8+/+ mice, the number of S. typhimurium colonized in the cecum was markedly increased in Fut8-/- mice. The production of the IgG and sIgA specific for S. typhimurium was significantly decreased in Fut8-/- mice. Moreover, loss of Fut8 decreased the induction of Th2-type cytokines from splenic cells of Fut8-/- mice during S. typhimurium infection. In addition, we found that the core fucosylation regulated the interaction between B and T cells in the lipid raft formation. CONCLUSION: Core fucosylation plays important roles in host defence against S. typhimurium infection.


Assuntos
Fucose/metabolismo , Fucosiltransferases/metabolismo , Imunidade Humoral , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Fucose/imunologia , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Linfócitos T/imunologia
3.
Monoclon Antib Immunodiagn Immunother ; 39(5): 167-174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33085938

RESUMO

Podoplanin (PDPN), a 36-kDa type I transmembrane O-glycoprotein, is expressed in normal cells, including renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, and in cancer cells, including brain tumors and squamous cell lung carcinomas. PDPN activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and PDPN/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced an anti-human PDPN monoclonal antibody (mAb), clone NZ-1 (rat IgG2a, lambda) and its rat-human chimeric mAbs (NZ-8/NZ-12), which neutralize PDPN/CLEC-2 interactions and inhibit platelet aggregation and cancer metastasis. In this study, we first developed a humanized anti-human PDPN mAb, named as NZ-27. We further produced a core-fucose-deficient version of NZ-27, named as P1027 and a core-fucose-deficient version of NZ-12, named as NZ-12f. We investigated the binding affinity, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antitumor activity of P1027 and NZ-12f. We demonstrated that the binding affinities of P1027 and NZ-12f against LN319 (a human glioblastoma cell line) are 1.1 × 10-8 and 3.9 × 10-9 M, respectively. ADCC reporter assays demonstrated that NZ-12f shows 1.5 times higher luminescence than P1027. Furthermore, NZ-12f showed 2.2 times higher ADCC than P1027, whereas both P1027 and NZ-12f showed high CDC activities against LN319 cells. Using LN319 xenograft models, P1027 and NZ-12f significantly reduced tumor development in an LN319 xenograft model compared with control human IgG. Treatment with P1027 and NZ-12f may be a useful therapy for patients with PDPN-expressing cancers.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Glioblastoma/tratamento farmacológico , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fucose/genética , Fucose/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imunoglobulina G/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Metástase Neoplásica , Ativação Plaquetária/imunologia , Agregação Plaquetária/imunologia , Ligação Proteica/imunologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Xenotransplantation ; 27(6): e12629, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697003

RESUMO

Progress has been made in overcoming antibody-mediated rejection of porcine xenografts by deleting pig genes that produce unique carbohydrate epitopes. Pigs deficient in galactose α-1,3 galactose (gene modified: GGTA1) and neu5Gc (gene modified: CMAH) have reduced levels of human antibody binding. Previously we identified α-fucose as a glycan that was expressed in high levels on cells of GGTA1/CMAH KO pigs. To validate the α-fucose phenotype observed previously we compared lectin affinity toward human and pig serum glycoproteins by dot blot analysis and confocal microscopy. Human anti-fucose antibody isolated by affinity chromatography was tested for specificity to L-fucose by custom macroarray. The affinity and cytotoxicity of the isolated human anti-fucose antibody toward human and GGTA1/CMAH KO pig PBMCs was determined by flow cytometry. Dot blot and confocal analysis support out previous findings that α-fucose is more highly expressed in pigs than humans. Pig kidney glomeruli and tubules contain abundant α-fucose and may represent focal sites for anti-α-fucose antibody binding. The Isolated human anti-fucose IgA, IgG and IgM bound to GGTA1/CMAH KO pig PBMC and were cytotoxic. Interestingly, the isolated human IgG cross reacted with the methyl pentose, L-rhamnose. Human anti-fucose antibody bound and was cytotoxic to GGTA1/CMAH KO pig peripheral blood monocytes. We have shown that α-fucose is an abundant target for cytotoxic human antibody in the organs of genetically modified pigs important to xenotransplantation.


Assuntos
Animais Geneticamente Modificados , Antígenos Heterófilos/imunologia , Fucose , Transplante Heterólogo , Animais , Fucose/imunologia , Galactosiltransferases , Técnicas de Inativação de Genes , Humanos , Leucócitos Mononucleares , Oxigenases de Função Mista , Suínos
5.
Cells ; 9(3)2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182948

RESUMO

The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood and the association between different immune features and the germline variants involved in AITD are yet unclear. We previously observed systemic depletion of IgG core fucosylation and antennary α1,2 fucosylation in peripheral blood mononuclear cells in AITD, correlated with anti-thyroid peroxidase antibody (TPOAb) levels. Fucose depletion is known to potentiate strong antibody-mediated NK cell activation and enhanced target antigen-expressing cell killing. In autoimmunity, this may translate to autoantibody-mediated immune cell recruitment and attack of self-antigen expressing normal tissues. Hence, we investigated the crosstalk between immune cell traits, secreted proteins, genetic variants and the glycosylation patterns of serum IgG, in a multi-omic and cross-sectional study of 622 individuals from the TwinsUK cohort, 172 of whom were diagnosed with AITD. We observed associations between two genetic variants (rs505922 and rs687621), AITD status, the secretion of Desmoglein-2 protein, and the profile of two IgG N-glycan traits in AITD, but further studies need to be performed to better understand their crosstalk in AITD. On the other side, enhanced afucosylated IgG was positively associated with activatory CD335- CD314+ CD158b+ NK cell subsets. Increased levels of the apoptosis and inflammation markers Caspase-2 and Interleukin-1α positively associated with AITD. Two genetic variants associated with AITD, rs1521 and rs3094228, were also associated with altered expression of the thyrocyte-expressed ligands known to recognize the NK cell immunoreceptors CD314 and CD158b. Our analyses reveal a combination of heightened Fc-active IgG antibodies, effector cells, cytokines and apoptotic signals in AITD, and AITD genetic variants associated with altered expression of thyrocyte-expressed ligands to NK cell immunoreceptors. Together, TPOAb responses, dysregulated immune features, germline variants associated with immunoactivity profiles, are consistent with a positive autoreactive antibody-dependent NK cell-mediated immune response likely drawn to the thyroid gland in AITD.


Assuntos
Autoanticorpos/metabolismo , Iodeto Peroxidase/metabolismo , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças da Glândula Tireoide/metabolismo , Autoanticorpos/imunologia , Estudos Transversais , Fucose/imunologia , Fucose/metabolismo , Humanos , Iodeto Peroxidase/genética , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Doenças da Glândula Tireoide/imunologia
6.
Glycobiology ; 30(6): 407-414, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31829411

RESUMO

The immunoglobulin type G (IgG) Fc N-glycans are known to modulate the interaction with membrane-bound Fc γ receptors (FcγRs), fine-tuning the antibody's effector function in a sequence-dependent manner. Particularly interesting in this respect are the roles of galactosylation, which levels are linked to autoimmune conditions and aging, of core fucosylation, which is known to reduce significantly the antibody-dependent cellular cytotoxicity (ADCC), and of sialylation, which also reduces antibody-dependent cellular cytotoxicity (ADCC) but only in the context of core-fucosylation. In this article, we provide an atomistic level perspective through enhanced sampling computer simulations, based on replica exchange molecular dynamics (REMD), to understand the molecular determinants linking the Fc N-glycans sequence to the observed IgG1 function. Our results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues. At room temperature, the terminal galactose on the α (1-6) arm is restrained to the protein through a network of interactions that keep the arm outstretched; meanwhile, the α (1-3) arm extends toward the solvent where a terminal sialic acid remains fully accessible. We also find that the presence of core fucose interferes with the extended sialylated α (1-3) arm, altering its conformational propensity and as a consequence of steric hindrance, significantly enhancing the Fc dynamics. Furthermore, structural analysis shows that the core-fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a "door-stop," potentially decreasing the IgG/FcγR binding free energy. These results provide an atomistic level-of-detail framework for the design of high potency IgG1 Fc N-glycoforms.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Polissacarídeos/química , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Fucose/química , Fucose/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos/síntese química , Polissacarídeos/imunologia
7.
J Clin Invest ; 129(9): 3492-3498, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478910

RESUMO

IgG antibodies are secreted from B cells and bind to a variety of pathogens to control infections as well as contribute to inflammatory diseases. Many of the functions of IgGs are mediated through Fcγ receptors (FcγRs), which transduce interactions with immune complexes, leading to a variety of cellular outcomes depending on the FcγRs and cell types engaged. Which FcγRs and cell types will be engaged during an immune response depends on the structure of Fc domains within immune complexes that are formed when IgGs bind to cognate antigen(s). Recent studies have revealed an unexpected degree of structural variability in IgG Fc domains among people, driven primarily by differences in IgG subclasses and N-linked glycosylation of the CH2 domain. This translates, in turn, to functional immune diversification through type I and type II FcγR-mediated cellular functions. For example, Fc domain sialylation triggers conformational changes of IgG1 that enable interactions with type II FcγRs; these receptors mediate cellular functions including antiinflammatory activity or definition of thresholds for B cell selection based on B cell receptor affinity. Similarly, presence or absence of a core fucose alters type I FcγR binding of IgG1 by modulating the Fc's affinity for FcγRIIIa, thereby altering its proinflammatory activity. How heterogeneity in IgG Fc domains contributes to human immune diversity is now being elucidated, including impacts on vaccine responses and susceptibility to disease and its sequelae during infections. Here, we discuss how Fc structures arising from sialylation and fucosylation impact immunity, focusing on responses to vaccination and infection. We also review work defining individual differences in Fc glycosylation, regulation of Fc glycosylation, and clinical implications of these pathways.


Assuntos
Linfócitos B/imunologia , Fucose/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Glicosilação , Humanos , Receptores de IgG/imunologia
8.
Mol Immunol ; 112: 312-321, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229844

RESUMO

Precise glycosylation plays a crucial and distinctive role in thymic T cell development. The core fucosylation is dramatically up-regulated at the transition from CD4-CD8- (DN) to CD4+CD8+ (DP) in the thymic development. Ablation of core fucosylation in T cells did reduce the size of the thymus due to a significant loss of CD4+ SP, CD8+ SP and DP thymocytes in core fucosyltransferase (Fut8) knockout (Fut8-/-) mice. T cell receptors (TCRs) are heavily core fucosylated glycoproteins. Loss of core fucosylation of TCR contributed to the reduced phosphorylation of ZAP70 (pZAP70) in Fut8-/- DP cells was observed. Compare to the Fut8+/+OT-II DP thymocytes, pZAP70 was significantly reduced in Fut8-/- OT-II DP thymocytes with OVA323-339 stimulation. Also, the pZAP70 of Fut8+/+OT-I DP thymocytes with OVA257-264 stimulation was remarkably attenuated by treatment of the fucosidase. Upon anti-CD3/CD28 Abs stimulation, the increased apoptosis was found in Fut8-/- thymocytes compared with Fut8+/+ thymocytes. Moreover, the TCRhiCD69hi (post-positive selection thymocytes) was markedly depleted in the Fut8-/- thymus without any stimulation. The expression of CD5 was significantly down-regulated on the DP cells in the Fut8-/- thymus. Our results therefore demonstrate that ablation of core fucosylation results in the abnormal T cell development due to the attenuated signaling via TCR.


Assuntos
Fucose/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Apoptose/imunologia , Antígenos CD5/imunologia , Diferenciação Celular/imunologia , Fucosiltransferases/imunologia , Glicosilação , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/imunologia , Timócitos/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia
9.
MAbs ; 11(5): 826-836, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990348

RESUMO

Typical crystallizable fragment (Fc) glycans attached to the CH2 domain in therapeutic monoclonal antibodies (mAbs) are core-fucosylated and asialo-biantennary complex-type glycans, e.g., G2F (full galactosylation), G1aF (terminal galactosylation on the Man α1-6 arm), G1bF (terminal galactosylation on the Man α1-3 arm), and G0F (non-galactosylation). Terminal galactose (Gal) residues of Fc-glycans are known to influence effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (CDC), but the impact of the G1F isomers (G1aF and G1bF) on the effector functions has not been reported. Here, we prepared four types of glycoengineered anti-CD20 mAbs bearing homogeneous G2F, G1aF, G1bF, or G0F (G2F mAb, G1aF mAb, G1bF mAb, or G0F mAb, respectively), and evaluated their biological activities. Interestingly, G1aF mAb showed higher C1q- and FcγR-binding activities, CDC activity, and FcγR-activation property than G1bF mAb. The activities of G1aF mAb and G1bF mAb were at the same level as G2F mAb and G0F mAb, respectively. Hydrogen-deuterium exchange/mass spectrometry analysis of dynamic structures of mAbs revealed the greater involvement of the terminal Gal residue on the Man α1-6 arm in the structural stability of the CH2 domain. Considering that mAbs interact with FcγR and C1q via their hinge proximal region in the CH2 domain, the structural stabilization of the CH2 domain by the terminal Gal residue on the Man α1-6 arm of Fc-glycans may be important for the effector functions of mAbs. To our knowledge, this is the first report showing the impact of G1F isomers on the effector functions and dynamic structure of mAbs. Abbreviations: ABC, ammonium bicarbonate solution; ACN, acetonitrile; ADCC, antibody-dependent cell-mediated cytotoxicity; C1q, complement component 1q; CDC, complement-dependent cytotoxicity; CQA, critical quality attribute; Endo, endo-ß-N-acetylglucosaminidase; FA, formic acid; Fc, crystallizable fragment; FcγR, Fcγ receptors; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GST, glutathione S-transferase; HER2, human epidermal growth factor receptor 2; HDX, hydrogen-deuterium exchange; HILIC, hydrophilic interaction liquid chromatography; HLB-SPE, hydrophilic-lipophilic balance-solid-phase extraction; HPLC, high-performance liquid chromatography; mAb, monoclonal antibody; Man, mannose; MS, mass spectrometry; PBS, phosphate-buffered saline; SGP, hen egg yolk sialylglycopeptides.


Assuntos
Galactose/química , Polissacarídeos/química , Rituximab/química , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Galinhas/imunologia , Fucose/química , Fucose/imunologia , Galactose/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Manose/química , Manose/imunologia , Polissacarídeos/imunologia , Rituximab/metabolismo , Rituximab/uso terapêutico
10.
Plant Biotechnol J ; 17(2): 505-516, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30058762

RESUMO

The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha-L-iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N- and O-glycosylation that characterize the alpha-L-iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N-glycosylation sites of the IDUA, a single N-glycan composed of a core Man3 GlcNAc2 carrying one beta(1,2)-xylose and one alpha(1,3)-fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O-glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.


Assuntos
Brassica rapa/enzimologia , Iduronidase/metabolismo , Animais , Brassica rapa/genética , Células CHO , Cricetulus , Epitopos/imunologia , Fucose/imunologia , Glicosilação , Humanos , Iduronidase/química , Iduronidase/genética , Manose/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Proteínas Recombinantes , Reprodutibilidade dos Testes , Transgenes , Xilose/imunologia
11.
Sci Rep ; 8(1): 16790, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429485

RESUMO

Breastfeeding is the normal way of providing young infants with the nutrients they need for healthy growth and development (WHO). Human milk oligosaccharides (hMOS) constitute a highly important class of nutrients that are attracting strong attention in recent years. Several studies have indicated that hMOS have prebiotic properties, but also are effective in anti-adhesion of pathogens, modulating the immune system and providing nutrients for brain growth and development. Most of the latter functions seem to be linked to the presence of fucose-containing immunodeterminant epitopes, and Neu5Ac-bearing oligosaccharides. Analysis of hMOS isolated from 101 mothers' milk showed regional variation in Lewis- and Secretor based immunodeterminants. Lewis-negative milk groups could be sub-divided into two sub-groups, based on the activity of a third and hitherto unidentified fucosyltransferase enzyme. Analysis of hMOS remaining in faeces showed three sub-groups based on hMOS surviving passage through the gut, full consumption, specific partial consumption and non-specific partial consumption, fitting previous findings.


Assuntos
Fucose/imunologia , Leite Humano/química , Oligossacarídeos/imunologia , Aleitamento Materno , Epitopos/imunologia , Fezes/enzimologia , Fucosiltransferases , Humanos , Lactente , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Leite Humano/enzimologia , Leite Humano/imunologia , Vietnã
12.
Monoclon Antib Immunodiagn Immunother ; 37(5): 218-223, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30362926

RESUMO

Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is expressed in normal tissues, including lymphatic endothelial cells, pulmonary type I alveolar cells, and renal podocytes. The overexpression of PDPN in cancers is associated with hematogenous metastasis by interactions with the C-type lectin-like receptor 2 (CLEC-2). We have previously reported the development of a mouse monoclonal antibody (mAb) clone, PMab-38 (IgG1, kappa), against dog PDPN (dPDPN). PMab-38 reacted strongly with canine squamous cell carcinomas and melanomas, but not with lymphatic endothelial cells, indicating its cancer specificity. In this study, we developed and produced several mouse-canine chimeric antibodies originating from PMab-38. A mouse-canine chimeric antibody of subclass A (P38A) and a mouse-canine chimeric antibody of subclass B (P38B) were transiently produced using ExpiCHO-S cells. Core-fucose-deficient P38B (P38Bf) was developed using FUT8 knockout ExpiCHO-S cells. We compared the binding affinities, antibody-dependent cellular cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC) of P38A, P38B, and P38Bf against Chinese hamster ovary (CHO)/dPDPN cells. Flow cytometry analysis showed that the KD of P38A, P38B, and P38Bf were 1.9 × 10-7, 5.2 × 10-9, and 6.5 × 10-9, respectively. Both P38B and P38Bf revealed high ADCC activities against CHO/dPDPN cells; P38Bf demonstrated significantly higher ADCC compared with P38B, especially at low concentrations. P38B and P38Bf exhibited higher CDC activities against CHO/dPDPN cells. Conversely, P38A did not exhibit any ADCC or CDC activity. In summary, P38Bf is a good candidate for antibody therapy against dPDPN-expressing canine cancers.


Assuntos
Anticorpos Monoclonais/imunologia , Glicoproteínas de Membrana/imunologia , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Cães , Epitopos/imunologia , Citometria de Fluxo , Fucose/genética , Fucose/imunologia , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Podócitos/imunologia , Proteínas Recombinantes de Fusão/genética
13.
Biochem Biophys Res Commun ; 503(4): 2633-2638, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30119885

RESUMO

Recombinant monoclonal antibodies (mAbs) have been used in various therapeutic applications including cancer therapy. Fc-mediated effector functions play a pivotal role in the tumor-killing activities of some tumor-targeting mAbs, and Fc-engineering technologies with glyco-engineering or amino acid substitutions at the antibody Fc region have been used to enhance cytotoxic activities including antibody-dependent cellular cytotoxicity (ADCC). We previously reported that the mAbs produced using transgenic silkworms showed stronger ADCC activity and lower complement-dependent cytotoxicity (CDC) activity than mAbs derived from Chinese hamster ovary (CHO) cells due to their unique N-glycan structure (lack of core-fucose and non-reducing terminal galactose). In this study, we generated anti-CD20 mAbs with amino acid substitutions using transgenic silkworms and analyzed their biological activities to assess the effect of the combination of glyco-engineering and amino acid substitutions on the Fc-mediated function of mAbs. Three types of amino acid substitutions at the Fc region (G236A/S239D/I332E, L234A/L235A, and K326W/E333S) modified the Fc-mediated biological activities of silkworm-derived mAbs as in the case of CHO-derived mAbs, resulting in the generation of Fc-engineered mAbs with characteristic Fc-mediated functions. The combination of amino acid substitutions at the Fc region and glyco-engineering using transgenic silkworm made it possible to generate Fc-engineered mAbs with suitable Fc-mediated biological functions depending on the pharmacological mechanism of their actions. Transgenic silkworms were shown to be a promising system for the production of Fc-engineered mAbs.


Assuntos
Anticorpos Monoclonais Humanizados/química , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/imunologia , Bombyx/genética , Fragmentos Fc das Imunoglobulinas/química , Linfócitos/imunologia , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/genética , Antígenos CD20/genética , Sequência de Carboidratos , Linhagem Celular Tumoral , Fucose/química , Fucose/imunologia , Galactose/química , Galactose/imunologia , Expressão Gênica , Humanos , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/genética , Células Jurkat , Linfócitos/citologia , Polissacarídeos/química , Polissacarídeos/imunologia , Engenharia de Proteínas
14.
ACS Chem Biol ; 13(8): 2179-2189, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016589

RESUMO

Therapeutic monoclonal antibodies (mAbs) are largely based on the immunoglobulin G1 (IgG1) scaffold, and many elicit a cytotoxic cell-mediated response by binding Fc γ receptors. Core fucosylation, a prevalent modification to the asparagine (N)-linked carbohydrate on the IgG1 crystallizable fragment (Fc), decreases the Fc γ receptor IIIa (CD16a) binding affinity and mAb efficacy. We determined IgG1 Fc fucosylation reduced the CD16a affinity by 1.7 ± 0.1 kcal/mol when compared to that of afucosylated IgG1 Fc; however, CD16a N-glycan truncation decreased this penalty by 1.2 ± 0.1 kcal/mol or 70%. Fc fucosylation restricted the manifold of conformations sampled by displacing the CD16a Asn162-glycan that impinges upon the linkage between the α-mannose(1-6)ß-mannose residues and promoted contacts with the IgG Tyr296 residue. Fucosylation also impacted the IgG1 Fc structure as indicated by changes in resonance frequencies and nuclear spin relaxation observed by solution nuclear magnetic resonance spectroscopy. The effects of fucosylation on IgG1 Fc may account for the remaining 0.5 ± 0.1 kcal/mol penalty of fucosylated IgG1 Fc binding CD16a when compared to that of afucosylated IgG1 Fc. Our results indicated the CD16a Asn162-glycan modulates the antibody affinity indirectly by reducing the volume sampled, as opposed to a direct mechanism with intermolecular glycan-glycan contacts previously proposed to stabilize this system. Thus, antibody engineering to enhance intermolecular glycan-glycan contacts will likely provide limited improvement, and future designs should maximize the affinity by maintaining the CD16a Asn162-glycan conformational heterogeneity.


Assuntos
Afinidade de Anticorpos , Fucose/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Configuração de Carboidratos , Cristalografia por Raios X , Fucose/análise , Glicosilação , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Simulação de Acoplamento Molecular , Polissacarídeos/análise , Polissacarídeos/imunologia , Receptores de IgG/química
15.
J Biol Chem ; 293(30): 11966-11967, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054292

RESUMO

Human norovirus binding to histo-blood group antigens (HBGAs) is thought to direct their entry into host cells. However, the glycan epitopes characteristic of HBGAs are also present on oligosaccharides abundant in human milk. In this issue of JBC, Hanisch et al compared norovirus binding to human gastric mucins and human milk oligosaccharides, finding those bound most avidly are rich in α-fucose. Mimicry of these epitopes with α-fucose multivalently displayed on other carbohydrate scaffolds successfully scavenged this prevalent virus, providing new insights into norovirus biology and clues for future therapeutic development.


Assuntos
Infecções por Caliciviridae/imunologia , Fucose/imunologia , Leite Humano/imunologia , Norovirus/imunologia , Oligossacarídeos/imunologia , Sítios de Ligação , Epitopos/química , Epitopos/imunologia , Fucose/análogos & derivados , Humanos , Leite Humano/química , Mucinas/química , Mucinas/imunologia , Norovirus/fisiologia , Oligossacarídeos/química , Polissacarídeos/química , Polissacarídeos/imunologia , Internalização do Vírus
16.
Semin Immunol ; 39: 102-110, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903548

RESUMO

Antibodies are antigen recognizing immunoglobulins with an amazingly diverse repertoire in the antigen specific domain. The diversity of the antibody response is further increased by modifications such as somatic recombination and hypermutation. Furthermore, variation in the isotype and post-translational modifications such as Fc glycosylation further increase diversity of the effector functions. In particular variations in the glycan structures contribute significantly to the functional capacities of the antibodies. This is of particular interest given the dynamic nature of these modifications that is strongly influenced by the inflammatory environment. Intriguingly, the glycan profile of antibodies has been unravelled in great detail in inflammatory (auto)immune diseases but received only limited attention in the area of infectious diseases and vaccination. Here, we reviewed the current knowledge on immunoglobulin glycosylation and specifically focussed on studies in the field of infectious diseases and vaccination against infectious diseases, an area with a lot of interesting opportunities.


Assuntos
Envelhecimento/imunologia , Anticorpos/metabolismo , Infecções por HIV/prevenção & controle , Influenza Humana/prevenção & controle , Processamento de Proteína Pós-Traducional , Vacinas Virais/administração & dosagem , Anticorpos/química , Anticorpos/genética , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , Sequência de Carboidratos , Fucose/imunologia , Fucose/metabolismo , Galactose/imunologia , Galactose/metabolismo , Glicosilação , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Inflamação , Influenza Humana/imunologia , Influenza Humana/virologia , Ácidos Siálicos/imunologia , Ácidos Siálicos/metabolismo , Vacinação , Vacinas Virais/imunologia
17.
J Biol Chem ; 293(30): 11955-11965, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29858242

RESUMO

There is agreement with respect to norovirus infection routes in humans regarding binding of the pathogen to gastrointestinal epithelia via recognition of blood group-active mucin-typeO-glycans as the initiating and essential event. Among food additives playing a potential role in applications to protect newborns, human milk oligosaccharides (HMOs) as competitors are of major importance. By focusing on fractions of high-molecular mass HMOs with high fucose contents, we attempted to identify the structural elements required for norovirus GII.4 (Sydney 2012, JX459908) capsid binding in neoglycolipid-based arrays. We provide evidence that HMO fractions with the strongest binding capacities contained hepta- to decasaccharides expressing branches with terminal blood group H1 or Lewis-b antigen. H2 antigen, as recognized by UEA-I lectin, is apparently not expressed in high-mass HMOs. Beyond affinity, sterical and valency effects contribute more to virus-like particle binding, as revealed for oligovalent fucose conjugates of α-cyclodextrin and oligofucoses from fucoidan. Accordingly, high-mass HMOs with oligovalent fucose can exhibit stronger binding capacities compared with monovalent fucose HMOs. The above features were revealed for the most clinically relevant and prevalent GII.4 strain and are distinct from other strains, like GII.10 (Vietnam 026, AF504671), which showed a preference for blood group Lewis-a positive glycans.


Assuntos
Infecções por Caliciviridae/imunologia , Fucose/imunologia , Leite Humano/imunologia , Norovirus/imunologia , Oligossacarídeos/imunologia , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/imunologia , Fucose/química , Humanos , Imunidade Inata , Leite Humano/química , Mucinas/química , Mucinas/imunologia , Norovirus/fisiologia , Oligossacarídeos/química , Polissacarídeos/química , Polissacarídeos/imunologia , Ligação Viral
18.
Cell Chem Biol ; 25(5): 499-512, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29526711

RESUMO

Fucosylation is a biological process broadly observed in vertebrates, invertebrates, plants, bacteria, and fungi. Fucose moieties on cell-surface glycans are increasingly recognized as critical to many cell-cell interaction and signaling processes. One of the characteristic roles of fucose is its regulation of selectin-dependent leukocyte adhesion that has been well studied over the last two decades. Recent studies of fucose in immune cell development and function regulation have significantly expanded the contemporary understanding of fucosylation. From cellular adhesion to immune regulation, herein we discuss the use of gene knockout studies, competitive inhibitors of fucose-containing glycan, and metabolic inhibitors of fucose biosynthesis to probe fucosylated glycan biosynthesis and signaling and its functional consequences. Promising clinical and preclinical applications in sickle cell disease, rheumatoid arthritis, tumor inhibition, metastasis prevention, antibody-dependent cell-mediated cytotoxicity, chemoresistance reversal, and in improving chemotherapy-related side effects and recovery are reviewed.


Assuntos
Adesão Celular , Fucose/imunologia , Imunidade Celular , Imunidade Inata , Anemia Falciforme/imunologia , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Fucose/análise , Fucose/metabolismo , Glicosilação , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Selectinas/imunologia , Selectinas/metabolismo
19.
J Immunol ; 199(1): 204-211, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566370

RESUMO

Abs of the IgG isotype are glycosylated in their Fc domain at a conserved asparagine at position 297. Removal of the core fucose of this glycan greatly increases the affinity for FcγRIII, resulting in enhanced FcγRIII-mediated effector functions. Normal plasma IgG contains ∼94% fucosylated Abs, but alloantibodies against, for example, Rhesus D (RhD) and platelet Ags frequently have reduced fucosylation that enhances their pathogenicity. The increased FcγRIII-mediated effector functions have been put to use in various afucosylated therapeutic Abs in anticancer treatment. To test the functional consequences of Ab fucosylation, we produced V-gene-matched recombinant anti-RhD IgG Abs of the four different subclasses (IgG1-4) with and without core fucose (i.e., 20% fucose remaining). Binding to all human FcγR types and their functional isoforms was assessed with surface plasmon resonance. All hypofucosylated anti-RhD IgGs of all IgG subclasses indeed showed enhanced binding affinity for isolated FcγRIII isoforms, without affecting binding affinity to other FcγRs. In contrast, when testing hypofucosylated anti-RhD Abs with FcγRIIIa-expressing NK cells, a 12- and 7-fold increased erythrocyte lysis was observed with the IgG1 and IgG3, respectively, but no increase with IgG2 and IgG4 anti-RhD Abs. Notably, none of the hypofucosylated IgGs enhanced effector function of macrophages, which, in contrast to NK cells, express a complex set of FcγRs, including FcγRIIIa. Our data suggest that the beneficial effects of afucosylated biologicals for clinical use can be particularly anticipated when there is a substantial involvement of FcγRIIIa-expressing cells, such as NK cells.


Assuntos
Fucose/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Fucose/imunologia , Fucose/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Ressonância de Plasmônio de Superfície
20.
J Biotechnol ; 242: 111-121, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28013072

RESUMO

Rice seed is a cost-effective bioreactor for the large-scale production of pharmaceuticals. However, convincing evidence of the immunogenicity of plant-specific glycans is still limited although plant-specific glycans are considered potential allergic antigens. In the present study, we found that the α-1,3-fucose content of the glycoprotein produced from rice seed was much lower than that in leaf, and conversely, a higher ß-1,2-xylose content was detected in seed than that in leaf. We detected the α-1,6-fucose content in the glutelin and recombinant human α1-antitrypsin (OsrAAT). The further results in a line containing AAT and FUT8 genes indicated that the α-1,6-fucose content of modified glycosylated recombinant α1-antitrypsin (mgOsrAAT) was 38.4%, while glutelin was only 6.8%. Interestingly, the α-1,3-fucose content of mgOsrAAT was significantly reduced by 59.8% compared with that of OsrAAT. Furthermore, we assessed the immunogenicity of OsrAAT, mgOsrAAT and human α1-antitrypsin (hAAT) using an animal system. The PCA results indicated no significant differences in the IgG, IgM and IgE titers among OsrAAT, mgOsrAAT and hAAT. Further studies revealed that those antibodies were mainly from α-1,3-fucose, but not from ß-1,2-xylose, indicating that α-1,3-fucose was the major immunogenic resource. Our results demonstrated that α-1,3-fucose contents in seed proteins was much less than that of leaf, and could not be a plant-specific glycan because it also exists in human proteins.


Assuntos
Fucosiltransferases/biossíntese , Fucosiltransferases/genética , Oryza/enzimologia , Oryza/genética , Polissacarídeos/imunologia , Animais , Anticorpos/sangue , Endosperma/química , Endosperma/enzimologia , Endosperma/genética , Endosperma/imunologia , Fucose/genética , Fucose/imunologia , Fucose/metabolismo , Fucosiltransferases/metabolismo , Glutens , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Glicosilação , Cobaias , Humanos , Masculino , Oryza/química , Oryza/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/química , Polissacarídeos/metabolismo , Coelhos , Xilose/genética , Xilose/imunologia , Xilose/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...