Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0197359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897911

RESUMO

Mangrove endophytic fungi can produce impressive quantities of metabolites with promising antioxidant activities that may be useful to humans as novel physiological agents. In this study, we investigated the phylogenetic diversity and antioxidant potential of 46 fungal endophytes derived from the mangrove species Rhizophora stylosa and R. mucronata from the South China Sea. The fungal isolates were identified using a combination of morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Seventeen genera belonging to 8 taxonomic orders of Ascomycota were discovered, specifically, Botryosphaeriales, Capnodiales, Diaporthales, Eurotiales, Glomerellales, Hypocreales, Pleosporales, and Xylariales. The most abundant fungal orders included Xylariales (35.49%) and Diaporthales (27.61%), which were predominantly represented by the culturable species Pestalotiopsis sp. (34.54%) and Diaporthe sp. (18.62%). The stems showed more frequent colonization and species diversity than the roots, leaves, hypocotyls, and flower tissues of the host plant. The antioxidant activities of all the isolated fungal extracts on four different culture media were assessed using improved 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) methods. A relatively high proportion (84.8%) of the isolates displayed antioxidant capacity (%RSA > 50%). Further research also provided the first evidence that HQD-6 could produce flufuran as a significant radical scavenger with IC50 values of 34.85±1.56 and 9.75±0.58 µg/mL, respectively. Our findings suggest that the utilization of a biotope such as that of the endophytic fungal community thriving on the mangrove plants R. stylosa and R. mucronata may be suitable for use as a sustainable resource for natural antioxidants.


Assuntos
Variação Genética , Filogenia , Rhizophoraceae/genética , Antioxidantes/química , Antioxidantes/farmacologia , DNA Espaçador Ribossômico , Endófitos/química , Endófitos/genética , Fungos não Classificados/química , Fungos não Classificados/genética , Humanos , Rhizophoraceae/química , Áreas Alagadas
2.
Z Naturforsch C J Biosci ; 73(1-2): 59-66, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29161234

RESUMO

(9Z)-Methyl 4-dihydrotrisporate B and (9Z)-methyl trisporate B, pheromones of Zygomycetes fungi, have been synthesized using Stille cross-coupling from previously described cyclohexenone precursors. Conducting the coupling without protection groups allowed for a short and stereospecific synthesis route of the late trisporoids. Stability studies for both the compounds revealed (9Z)-methyl trisporate B to be very unstable against UV irradiation.


Assuntos
Carotenoides/síntese química , Cicloexenos/síntese química , Ácidos Graxos Insaturados/síntese química , Fungos não Classificados/química , Fator de Acasalamento/síntese química , Terpenos/síntese química , Fungos não Classificados/metabolismo , Fator de Acasalamento/efeitos da radiação , Raios Ultravioleta
3.
Curr Microbiol ; 69(5): 740-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25002358

RESUMO

Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time.


Assuntos
Produtos Biológicos/análise , Curcuma/microbiologia , Endófitos/química , Fungos não Classificados/química , Cromatografia , Endófitos/isolamento & purificação , Fungos não Classificados/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...