Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679479

RESUMO

Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.


Assuntos
Encéfalo , Furões , Imageamento por Ressonância Magnética , Animais , Furões/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Estudos Longitudinais , Caracteres Sexuais
2.
J Comp Neurol ; 530(5): 804-816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611910

RESUMO

Corticocortical connections link visual cortical areas in both the ipsilateral and contralateral hemispheres. We studied the postnatal refinement of callosal connections linking multiple cortical areas with ferret area 17 during the period from just before eye opening (4 weeks) to 10 weeks of age. We aimed to determine (1) whether callosal projections from multiple visual cortical areas to area 17 refine with a similar rate and (2) whether the refinement of callosal projections parallels that of intrahemispheric cortical circuits. We injected the bidirectional tracer CTb into area 17, and mapped the areal and laminar distribution of labeled cells in visual areas of the contralateral hemisphere. Like intrahemispheric projections, callosal inputs to area 17 before eye opening are dominated by Suprasylvian area Ssy (with lesser and comparable input from areas 17, 18, 19, and 21), but within 2 weeks of eye opening are jointly dominated by area 18 and Ssy inputs; however, there are fewer labeled cells in the contralateral hemisphere. Unlike intrahemispheric projections, there is no laminar reorganization of callosal inputs; in all visual areas and at all ages studied, the greatest proportion of callosal projections arises from the infragranular layers. Also, unlike intrahemispheric projections, the peak density of callosal cells in each area projecting to area 17 declines more modestly. These results reveal important similarities and differences in the postnatal reorganization of inter- and intrahemispheric projections to area 17.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Corpo Caloso/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais
3.
Elife ; 102021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878404

RESUMO

Intracortical inhibition plays a critical role in shaping activity patterns in the mature cortex. However, little is known about the structure of inhibition in early development prior to the onset of sensory experience, a time when spontaneous activity exhibits long-range correlations predictive of mature functional networks. Here, using calcium imaging of GABAergic neurons in the ferret visual cortex, we show that spontaneous activity in inhibitory neurons is already highly organized into distributed modular networks before visual experience. Inhibitory neurons exhibit spatially modular activity with long-range correlations and precise local organization that is in quantitative agreement with excitatory networks. Furthermore, excitatory and inhibitory networks are strongly co-aligned at both millimeter and cellular scales. These results demonstrate a remarkable degree of organization in inhibitory networks early in the developing cortex, providing support for computational models of self-organizing networks and suggesting a mechanism for the emergence of distributed functional networks during development.


Assuntos
Furões/fisiologia , Neurônios GABAérgicos/fisiologia , Córtex Visual Primário/fisiologia , Animais , Feminino , Furões/crescimento & desenvolvimento , Masculino , Córtex Visual Primário/crescimento & desenvolvimento
4.
Elife ; 92020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32701059

RESUMO

Modifications of synaptic inputs and cell-intrinsic properties both contribute to neuronal plasticity and development. To better understand these mechanisms, we undertook an intracellular analysis of the development of direction selectivity in the ferret visual cortex, which occurs rapidly over a few days after eye opening. We found strong evidence of developmental changes in linear spatiotemporal receptive fields of simple cells, implying alterations in circuit inputs. Further, this receptive field plasticity was accompanied by increases in near-spike-threshold excitability and input-output gain that resulted in dramatically increased spiking responses in the experienced state. Increases in subthreshold membrane responses induced by the receptive field plasticity and the increased input-output spiking gain were both necessary to explain the elevated firing rates in experienced ferrets. These results demonstrate that cortical direction selectivity develops through a combination of plasticity in inputs and in cell-intrinsic properties.


Assuntos
Furões/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Furões/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento
5.
Curr Biol ; 29(7): 1149-1160.e4, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905607

RESUMO

The existence of axons extending from one retina to the other has been reported during perinatal development in different vertebrates. However, it has been thought that these axons are either a labeling artifact or misprojections. Here, we show unequivocally that a small subset of retinal ganglion cells (RGCs) project to the opposite retina and that the guidance receptor Unc5c, expressed in the retinal region where the retinal-retinal (R-R) RGCs are located, is necessary and sufficient to guide axons to the opposite retina. In addition, Netrin1, an Unc5c ligand, is expressed in the ventral diencephalon in a pattern that is consistent with impeding the growth of Unc5c-positive retinal axons into the brain. We also have generated a mathematical model to explore the formation of retinotopic maps in the presence and absence of a functional connection between both eyes. This model predicts that an R-R connection is required for the bilateral coordination of axonal refinement in species where refinement depends upon spontaneous retinal waves. Consistent with this idea, the retinal expression of Unc5c correlates with the existence and size of an R-R projection in different species and with the extent of axonal refinement in visual targets. These findings demonstrate that active guidance drives the formation of the R-R projection and suggest an important role for these projections in visual mapping to ensure congruent bilateral refinement.


Assuntos
Galinhas/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Receptores de Netrina/genética , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Camundongos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo
6.
Cereb Cortex ; 29(10): 4303-4311, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30541068

RESUMO

Changes in the cerebral cortex of mammals during evolution have been of great interest. Ferrets, monkeys, and humans have more developed cerebral cortices compared with mice. Although the features of progenitors in the developing cortices of these animals have been intensively investigated, those of the fiber layers are still largely elusive. By taking the advantage of our in utero electroporation technique for ferrets, here we systematically investigated the cellular origins and projection patterns of axonal fibers in the developing ferret cortex. We found that ferrets have 2 fiber layers in the developing cerebral cortex, as is the case in monkeys and humans. Axonal fibers in the inner fiber layer projected contralaterally and subcortically, whereas those in the outer fiber layer sent axons to neighboring cortical areas. Furthermore, we performed similar experiments using mice and found unexpected similarities between ferrets and mice. Our results shed light on the cellular origins, the projection patterns, the developmental processes, and the evolution of fiber layers in mammalian brains.


Assuntos
Axônios/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Furões/anatomia & histologia , Furões/crescimento & desenvolvimento , Animais , Córtex Cerebral/citologia , Camundongos Endogâmicos ICR , Especificidade da Espécie
7.
Cereb Cortex ; 29(10): 4321-4333, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30561529

RESUMO

Blindness early in life induces permanent alterations in brain anatomy, including reduced surface area of primary visual cortex (V1). Bilateral enucleation early in development causes greater reductions in primary visual cortex surface area than at later times. However, the time at which cortical surface area expansion is no longer sensitive to enucleation is not clearly established, despite being an important milestone for cortical development. Using histological and MRI techniques, we investigated how reductions in the surface area of V1 depends on the timing of blindness onset in rats, ferrets and humans. To compare data across species, we translated ages of all species to a common neuro-developmental event-time (ET) scale. Consistently, blindness during early cortical expansion induced large (~40%) reductions in V1 surface area, in rats and ferrets, while blindness occurring later had diminishing effects. Longitudinal measurements on ferrets confirmed that early enucleation disrupted cortical expansion, rather than inducing enhanced pruning. We modeled the ET associated with the conclusion of the effect of blindness on surface area at maturity (ETc), relative to the normal conclusion of visual cortex surface area expansion, (ETdev). A final analysis combining our data with extant published data confirmed that ETc occurred well before ETdev.


Assuntos
Cegueira/patologia , Cegueira/fisiopatologia , Furões/anatomia & histologia , Furões/crescimento & desenvolvimento , Privação Sensorial/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/patologia , Idade de Início , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Humanos , Ratos , Especificidade da Espécie
8.
Neuroscience ; 364: 71-81, 2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-28935238

RESUMO

The present study characterized quantitatively sexual dimorphic development of gyrification by MRI-based morphometry. High spatial-resolution 3D MR images (using RARE sequence with short TR and minimum TE setting) were acquired from fixed brain of male and female ferrets at postnatal days (PDs) 4-90 using 7-tesla preclinical MRI system. The gyrification index was evaluated either throughout the cerebral cortex (global GI) or in representative primary sulci (sulcal GI). The global GI increased linearly from PD 4, and reached a peak at PD 42, marking 1.486±0.018 in males and 1.460±0.010 in females, respectively. Sexual difference was obtained by greater global GI in males than in females on PD 21 and thereafter. Rostrocaudal GI distribution revealed an overall male-over-female sulcal infolding throughout the cortex on PD 21. Then, an adult pattern of sexually dimorphic cortical convolution was achieved so that gyrification in the temporo-parieto-occipital region was more progressive in males than in females on PD 42, and slightly extended posteriorly in males until PD 90. In the sulcal GI, sulcus-specific male-over-female GI was revealed in the rhinal fissure, and presylvian sulcus on PD 42, and additionally in the coronal, splenial, lateral, and caudal suprasylvian sulci on PD 90. The current results suggest that age-related sexual dimorphism of the gyrification was biphasic in the ferret cortex. A male-over-female gyrification was allometric by PD 21, and was thereafter specific to primary sulci located on phylogenetically newer multimodal cortical regions.


Assuntos
Córtex Cerebral , Furões , Caracteres Sexuais , Animais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Furões/anatomia & histologia , Furões/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Masculino
9.
J Comp Neurol ; 524(17): 3561-3576, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072916

RESUMO

Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the "tiling" of the brain with non-overlapping territories. There are some documented species and brain region-specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two-photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo-recipient cortical layers ("kissing" astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit-specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561-3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.


Assuntos
Astrócitos/citologia , Furões/anatomia & histologia , Córtex Visual/citologia , Envelhecimento/patologia , Animais , Contagem de Células , Tamanho Celular , Eletroporação , Furões/crescimento & desenvolvimento , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Neurológicos , Córtex Visual/crescimento & desenvolvimento
10.
J Comp Neurol ; 524(3): 456-70, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25963823

RESUMO

The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal.


Assuntos
Furões/crescimento & desenvolvimento , Furões/fisiologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Células-Tronco Neurais/fisiologia , Fase S/fisiologia , Animais , Desoxiuridina/análogos & derivados , Imunofluorescência , Fase G1/fisiologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tempo
11.
EMBO J ; 34(14): 1859-74, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25916825

RESUMO

Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Furões/genética , Regulação da Expressão Gênica no Desenvolvimento , Malformações do Desenvolvimento Cortical/genética , Animais , Animais Recém-Nascidos , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Quinase 6 Dependente de Ciclina/genética , Feminino , Furões/embriologia , Furões/crescimento & desenvolvimento , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Gravidez , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
12.
Nat Neurosci ; 18(2): 185-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581359

RESUMO

Spatial hearing evolved independently in mammals and birds and is thought to adapt to altered developmental input in different ways. We found, however, that ferrets possess multiple forms of plasticity that are expressed according to which spatial cues are available, suggesting that the basis for adaptation may be similar across species. Our results also provide insight into the way sound source location is represented by populations of cortical neurons.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Auditivo/fisiologia , Furões/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Animais , Córtex Auditivo/crescimento & desenvolvimento , Comportamento Animal/fisiologia , Feminino , Furões/crescimento & desenvolvimento , Lateralidade Funcional/fisiologia , Audição/fisiologia , Masculino , Percepção Espacial/fisiologia
13.
Nat Neurosci ; 18(2): 252-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25599224

RESUMO

Stimulus discrimination depends on the selectivity and variability of neural responses, as well as the size and correlation structure of the responsive population. For direction discrimination in visual cortex, only the selectivity of neurons has been well characterized across development. Here we show in ferrets that at eye opening, the cortical response to visual stimulation exhibits several immaturities, including a high density of active neurons that display prominent wave-like activity, a high degree of variability and strong noise correlations. Over the next three weeks, the population response becomes increasingly sparse, wave-like activity disappears, and variability and noise correlations are markedly reduced. Similar changes were observed in identified neuronal populations imaged repeatedly over days. Furthermore, experience with a moving stimulus was capable of driving a reduction in noise correlations over a matter of hours. These changes in variability and correlation contribute significantly to a marked improvement in direction discriminability over development.


Assuntos
Discriminação Psicológica/fisiologia , Furões/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Fatores Etários , Animais , Feminino , Furões/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Imagem Óptica/métodos , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento
14.
J Comp Neurol ; 522(14): 3208-28, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24665018

RESUMO

Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process.


Assuntos
Retroalimentação , Neurônios/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/fisiologia , Fatores Etários , Animais , Mapeamento Encefálico , Contagem de Células , Toxina da Cólera/metabolismo , Feminino , Furões/anatomia & histologia , Furões/crescimento & desenvolvimento , Neurônios/citologia
15.
Differentiation ; 87(1-2): 32-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393477

RESUMO

Mammalian tooth development is characterized by formation of primary teeth that belong to different tooth classes and are later replaced by a single set of permanent teeth. The first primary teeth are initiated from the primary dental lamina, and the replacement teeth from the successional dental lamina at the lingual side of the primary teeth. An interdental lamina connects the primary tooth germs together. Most mammalian tooth development research is done on mouse, which does not have teeth in all tooth classes, does not replace its teeth, and does not develop an interdental lamina. We have used the ferret (Mustela putorius furo) as a model animal to elucidate the morphological changes and gene expression during the development of the interdental lamina and the initiation of primary teeth. In addition we have analyzed cell-cell signaling taking place in the interdental lamina as well as in the successional lamina during tooth replacement. By 3D reconstructions of serial histological sections we observed that the morphogenesis of the interdental lamina and the primary teeth are intimately linked. Expression of Pitx2 and Foxi3 in the interdental lamina indicates that it has odontogenic identity, and there is active signaling taking place in the interdental lamina. Bmp4 is coexpressed with the stem cell factor Sox2 at its lingual aspect suggesting that the interdental lamina may retain competence for tooth initiation. We show that when tooth replacement is initiated there is Wnt pathway activity in the budding successional lamina and adjacent mesenchyme but no active Fgf or Eda signaling. Genes associated with human tooth replacement phenotypes, including Runx2 and Il11rα, are mostly expressed in the mesenchyme around the successional lamina in the ferret. Our results highlight the importance of the dental lamina in the mammalian tooth development during the initiation of both primary and replacement teeth.


Assuntos
Furões/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Odontogênese/genética , Dente/crescimento & desenvolvimento , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Humanos , Camundongos , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/genética , Fatores de Transcrição/biossíntese , Via de Sinalização Wnt/genética , Proteína Homeobox PITX2
16.
Curr Biol ; 23(14): 1291-9, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23810532

RESUMO

BACKGROUND: Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory spatial processing of rearing ferrets with localization cues that were modified via a unilateral earplug, interspersed with brief periods of normal hearing. RESULTS: In contrast with control animals, which rely primarily on timing and intensity differences between their two ears to localize sound sources, the juvenile-plugged ferrets developed the ability to localize sounds accurately by relying more on the unchanged spectral localization cues provided by the single normal ear. This adaptive process was paralleled by changes in neuronal responses in the primary auditory cortex, which became relatively more sensitive to these monaural spatial cues. Our behavioral and physiological data demonstrated, however, that the reweighting of different spatial cues disappeared as soon as normal hearing was experienced, showing for the first time that this type of plasticity can be context specific. CONCLUSIONS: These results show that developmental changes can be selectively expressed in response to specific acoustic conditions. In this way, the auditory system can develop and simultaneously maintain two distinct models of auditory space and switch between these models depending on the prevailing sensory context. This ability is likely to be critical for maintaining accurate perception in dynamic environments and may point toward novel therapeutic strategies for individuals who experience sensory deficits during development.


Assuntos
Córtex Auditivo/fisiologia , Furões/fisiologia , Audição , Plasticidade Neuronal , Localização de Som , Estimulação Acústica , Animais , Sinais (Psicologia) , Furões/crescimento & desenvolvimento
17.
Cereb Cortex ; 23(2): 488-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22368085

RESUMO

Spatial and temporal variations in cortical growth were studied in the neonatal ferret to illuminate the mechanisms of folding of the cerebral cortex. Cortical surface representations were created from magnetic resonance images acquired between postnatal day 4 and 35. Global measures of shape (e.g., surface area, normalized curvature, and sulcal depth) were calculated. In 2 ferrets, relative cortical growth was calculated between surfaces created from in vivo images acquired at P14, P21, and P28. The isocortical surface area transitions from a slower (12.7 mm(2)/day per hemisphere) to a higher rate of growth (36.7 mm(2)/day per hemisphere) approximately 13 days after birth, which coincides with the time of transition from neuronal proliferation to cellular morphological differentiation. Relative cortical growth increases as a function of relative geodesic distance from the origin of the transverse neurogenetic gradient and is related to the change in fractional diffusion anisotropy over the same time period. The methods presented here can be applied to study cortical growth during development in other animal models or human infants. Our results provide a quantitative spatial and temporal description of folding in cerebral cortex of the developing ferret brain, which will be important to understand the underlying mechanisms that drive folding.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Neurogênese , Animais , Feminino , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
18.
Brain Struct Funct ; 218(5): 1293-306, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23052548

RESUMO

A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.


Assuntos
Furões/anatomia & histologia , Histocitoquímica/métodos , Sinapses/ultraestrutura , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Fatores Etários , Animais , Densitometria , Feminino , Furões/crescimento & desenvolvimento , Estatísticas não Paramétricas , Sinapses/metabolismo , Zinco/metabolismo
19.
Congenit Anom (Kyoto) ; 52(3): 168-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22925218

RESUMO

The present study aimed to clarify sulcation and gyration patterns in the developing cerebrum of ferrets. While the brain weight and fronto-occipital length of the cerebral hemisphere reached a plateau by postnatal day (PD) 42, the cerebral width reached a plateau at the rostral region by PD 21, and subsequently at the caudal region by PD 42. The ferret cerebrum already showed a convoluted surface with indentations of coronal and rostral suprasylvian sulci on PD 4. The presylvian and cruciate sulci emerged by PD 10, resulting in convolutions of gyri in the rostral half of the cerebrum. The caudal half of the cerebrum was infolded by the emergence of the pseudosylvian sulcus and the rhinal fissure by PD 10, and the caudal suprasylvian and lateral sulci by PD 21. The emergence of those sulci allowed a gyration in the caudal half of the cerebrum. Sexual differences in sulcation were detected by a more distinct convolution of the visual cortex in males than in females on PD 90. Those results, therefore, suggest that the ferret cerebrum experiences cortical maturation with sulcation and gyration in a rostrocaudal gradient manner. The present paper provides neuroanatomic references for normal development of cerebral sulci and gyri in both sexes of ferrets.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Animais , Feminino , Masculino , Córtex Visual/crescimento & desenvolvimento
20.
J Comp Neurol ; 520(5): 914-32, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21830218

RESUMO

Retinal input plays an important role in the specification of topographically organized circuits and neuronal response properties, but the mechanism and timing of this effect is not known in most species. A system that shows dramatic dependence on retinal influences is the interhemispheric connection through the corpus callosum. Using ferrets, we analyzed the extent to which development of the visual callosal pattern depends on retinal influences, and explored the period during which these influences are required for normal pattern formation. We studied the mature callosal patterns in normal ferrets and in ferrets bilaterally enucleated (BE) at postnatal day 7 (P7) or P20. Callosal patterns were revealed in tangential sections from unfolded and flattened brains following multiple injections of horseradish peroxidase in the opposite hemisphere. We also estimated the effect of enucleation on the surface areas of striate and extrastriate visual cortex by using magnetic resonance imaging (MRI) data from intact brains. In BEP7 ferrets we found that the pattern of callosal connections was highly anomalous and the sizes of both striate and extrastriate visual cortex were significantly reduced. In contrast, enucleation at P20 had no significant effect on the callosal pattern, but it still caused a reduction in the size of striate and extrastriate visual cortex. Finally, retinal deafferentation had no significant effect on the number of visual callosal neurons. These results indicate that the critical period during which the eyes influence the development of callosal patterns, but not the size of visual cortex, ends by P20 in the ferret.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Furões/crescimento & desenvolvimento , Retina/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Corpo Caloso/anatomia & histologia , Enucleação Ocular/métodos , Furões/anatomia & histologia , Retina/anatomia & histologia , Retina/crescimento & desenvolvimento , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...