Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Phytochemistry ; 222: 114102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641144

RESUMO

Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.


Assuntos
Angelica sinensis , Furocumarinas , Furocumarinas/química , Furocumarinas/metabolismo , Furocumarinas/biossíntese , Angelica sinensis/química , Angelica sinensis/metabolismo , Estrutura Molecular
2.
Biomed Chromatogr ; 37(10): e5702, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37455366

RESUMO

Imperatorin, a furanocoumarin that widely exists in many umbelliferous herbs, has been demonstrated to have a variety of pharmacological effects, including anti-inflammatory, antiosteoporosis, and antitumor activities. The purpose of this study was to investigate the metabolism of imperatorin using liver microsomes. The metabolites were generated by individually incubating imperatorin with rat, dog, monkey, and human liver microsomes. To trap the reactive metabolites during microsomal metabolism, glutathione (GSH) was included in the incubation. A LC technique coupled with benchtop orbitrap MS with full mass/data-dependent tandem mass spectrometry acquisition mode was used to detect and identify the generated metabolites. The possible structures of the metabolites were characterized according to their accurate masses and fragment ions. Under the current conditions, a total of 10 metabolites, including four GSH adducts, were identified. The results indicated that imperatorin underwent extensive metabolic reactions including hydroxylation, oxidation, glucuronidation, and GSH conjugation. This study provides essential data on the metabolism of imperatorin, which will be helpful for us to understand the safety and efficacy of this bioactive compound.


Assuntos
Furocumarinas , Microssomos Hepáticos , Ratos , Humanos , Cães , Animais , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo , Haplorrinos/metabolismo , Espectrometria de Massas em Tandem/métodos , Furocumarinas/metabolismo , Glutationa/metabolismo
3.
J Biomol Struct Dyn ; 41(21): 12026-12037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602143

RESUMO

Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.


Assuntos
Furocumarinas , Humanos , Membrana Celular/metabolismo , Furocumarinas/farmacologia , Furocumarinas/análise , Furocumarinas/metabolismo , Simulação de Dinâmica Molecular , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo
4.
J Chem Ecol ; 48(11-12): 850-866, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36450872

RESUMO

The genus Depressaria (Lepidoptera: Depressariidae) mostly comprises specialist herbivores with varying capacity for detoxification of defensive phytochemistry. Depressaria depressana, a Eurasian moth recently introduced into North America, is a family-level specialist of the Apiaceae, whose hosts include more than a dozen species in multiple tribes; Depressaria radiella is a super-specialist of Eurasian origin that feeds exclusively on species in the genera Pastinaca and Heracleum throughout its native and introduced range. In eastern North America, it feeds upon Pastinaca sativa, an invasive European species, and Heracleum maximum, a native species. We determined whether differences in furanocoumarin metabolism exist between D. depressana and two isolated populations of D. radiella, feeding exclusively on either P. sativa or H. maximum. We also compared gravimetric estimates of feeding efficiency to assess D. depressana larval performance on different diets. Both populations of D. radiella metabolized furanocoumarins at a greater rate than D. depressana. Although there was no difference in rates of metabolism of linear furanocoumarins in the two populations of D. radiella, individuals collected from H. maximum metabolized angular furanocoumarins more rapidly. The gravimetric assessments of feeding efficiencies revealed that D. depressana exhibited highest efficiencies consuming Daucus carota; moreover, this species survived to pupation consuming fruits of Zizia aurea, an apiaceous species native to North America. Our preliminary phylogenetic analysis, building on an earlier morphological analysis, incorporates mitochondrial cytochrome oxidase subunit 1 data from the BOLD database and revealed that the presence or absence of furanocoumarins is not a strong predictor of species-level evolution in Depressaria.


Assuntos
Furocumarinas , Mariposas , Pastinaca , Animais , Furocumarinas/metabolismo , Filogenia , Mariposas/metabolismo , Larva/metabolismo , Dieta , Pastinaca/metabolismo
5.
Food Chem Toxicol ; 153: 112278, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34019943

RESUMO

Bergamottin (BGM) is a major furanocoumarin constituent of grapefruit and is reported to have inhibitory effects on cytochrome P450 enzymes. This study investigated the chemical interactions between BGM and the enzyme CYP2C9. BGM exhibited time-, concentration-, and NADPH-dependent inhibition of CYP2C9. Co-incubation with diclofenac, a reversible inhibitor of CYP2C9, attenuated the time-dependent enzyme inhibition. Exhaustive dialysis did not restore enzyme activity post-inhibition. Glutathione (GSH) and catalase/superoxide dismutase failed to reverse BGM-induced CYP2C9 inactivation. A GSH trapping study suggested that BGM was metabolized to an epoxide and/or γ-ketoenal that may have been responsible for the enzyme inactivation. In conclusion, BGM can be characterized as a mechanism-based inactivator of CYP2C9 acting via the formation of an epoxide and/or γ-ketoenal.


Assuntos
Inibidores do Citocromo P-450 CYP2C9/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Furocumarinas/farmacologia , Inibidores do Citocromo P-450 CYP2C9/metabolismo , Diclofenaco/farmacologia , Furocumarinas/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
6.
Sci Rep ; 11(1): 8754, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888745

RESUMO

Psoralen is one of the most effective ingredients extracted from the Chinese herb, Psoralea corylifolia L. Studies have found that psoralen has anti-inflammatory and estrogen-like effects; however, little research has been conducted to elucidate the mechanisms underlying these effects. Through the molecule docking assay, psoralen was found to have a better combination with ERα than ERß. In human periodontal ligament cells, psoralen was found to upregulate the estrogen target genes (e.g., CTSD, PGR, TFF1) and down-regulate the expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6 and IL-8) stimulated by P. gingivalis LPS, as well as TLR4-IRAK4-NF-κb signaling pathway proteins. These effects were reversed by the ER antagonist ICI 182780. These results indicated that psoralen may exert anti-inflammatory effects as an agonist to ER, which could provide a theoretical basis for the use of psoralen for adjuvant therapy and prevention of periodontitis.


Assuntos
Anti-Inflamatórios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Furocumarinas/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/metabolismo , Furocumarinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo
7.
Biochem Pharmacol ; 184: 114401, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387483

RESUMO

BACKGROUND: Allergic asthma is a common inflammatory lung disease associated with complex pathogenesis. Mast cell (MC) is one of the key drivers of allergic asthma, Mas-related G protein-coupled receptor X2 (MRGPRX2) on the MC could mediate MC activation and trigger a pseudo-allergic reaction. Imperatorin (IMP), the main active compound of Radix Angelicae Dahuricae, has been reported to exert various pharmacological effects. In this study, we focused on the therapeutical mechanism of IMP on MRGPRX2-induced pseudo-allergy and allergic asthma. METHODS: We examined the effect of IMP on MRGPRX2 related mast cell activation in mouse peritoneal MC (MPMC), Human Laboratory of Allergic Disease 2 MCs (LAD2 cells) and Mrgprx2-expressing HEK293 cells. Molecular docking and Surface plasmon resonance (SPR) were taken to reveal the binding character between IMP and MRPGRX2. MRGPRX2 downstream proteins were also detected by western blotting. IgE-independent responses was evaluated by using passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) models. The therapeutic effect of IMP on asthma was evaluated by a lung inflammation mouse model which was induced by ovalbumin (OVA). RESULTS: IMP was found to reduce substance P (SP) induced calcium flux and suppressed degranulation of MC. SP can promote the phosphorylation of ERK and CamKII, which regulates the synthesis of inflammatory factors such as MIP-2 and TNF-α in MC. In vivo assays revealed that IMP can mitigate SP-induced mouse PCA and ASA. IMP could also mitigate lung inflammation in an OVA induced mice model by inhibiting MC activation in the lung tissue. Furthermore, IMP binds well to MRGPRX2 protein. The binding constant (KD) is 4.48 ± 0.49 × 10-7 M. The data suggeste that IMP is a novel inhibitor of MRGPRX2 to treat allergic asthma.


Assuntos
Furocumarinas/farmacologia , Hipersensibilidade/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Furocumarinas/metabolismo , Histamina/metabolismo , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos Endogâmicos C57BL , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
8.
Plant Mol Biol ; 104(3): 327-337, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32761540

RESUMO

KEY MESSAGE: Psoralen synthase and angelicin synthase responsible for the formation of psoralen and angelicin in Peucedanum praeruptorum Dunn were identified and functionally characterized, respectively. Furanocoumarins were reported to possess several activities such as anticancer, anti-inflammatory and neuroprotective, and function as phytotoxin and allelochemical in plants. Furanocoumarins are the main bioactive ingredient in P. praeruptorum which is a commonly used traditional Chinese medicine. Phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hyfroxylase (C2'H) were cloned previously to elucidate the biosynthetic mechanism of coumarin lactone ring. However, the genes involved in complex coumarins in P. praeruptorum have not been explored. Herein, putative psoralen synthase CYP71AJ49 and angelicin synthase CYP71AJ51 were cloned from P. praeruptorum. In vivo and in vitro yeast assays were conducted to confirm their activities. Furthermore, the results of High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry (HPLC-ESI-MS) verified that CYP71AJ49 catalyzed the conversion of marmesin to psoralen, and CYP71AJ51 catalyzed columbianetin to angelicin. Subsequently, the expression profile showed that CYP71AJ49 and CYP71AJ51 were easily affected by environmental conditions, especially UV and temperature. The genes tissue-specific expression and compounds tissue-specific distribution pattern indicated the existence of substance transport in P. praeruptorum. Phylogenetic analysis was conducted with 27 CYP71AJs, CYP71AJ49 and CYP71AJ51 were classified in I-4 and I-2, respectively. These results provide further insight to understand the biosynthetic mechanism of complex coumarins.


Assuntos
Apiaceae/enzimologia , Apiaceae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furocumarinas/metabolismo , Proteínas de Plantas/metabolismo , Apiaceae/genética , China , Cromatografia Líquida de Alta Pressão/métodos , Coenzima A Ligases/genética , Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Furocumarinas/química , Furocumarinas/genética , Regulação da Expressão Gênica de Plantas , Cinética , Medicina Tradicional Chinesa , Fenilalanina Amônia-Liase/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Transcriptoma
9.
Molecules ; 25(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664320

RESUMO

Coumarins are plant-derived secondary metabolites. The crystal structure of three coumarins-bergamottin, osthole and fraxidin-are described and we analyze intermolecular interactions and their role in crystal formation. Bergamottin is a furanocoumarin found in citrus plants, which is a strong inhibitor of the principal human metabolizing enzyme, cytochrome P450 3A4 (CYP3A4). The crystal structure determinations of three coumarins give us the geometrical parameters and reveal the parallel-displaced π-π stacking and hydrogen bonding intermolecular interactions used for molecular assembly in the crystal structure. A quite strong (less than 3.4 Å) stacking interaction of bergamottin appears to be a determining feature that distinguishes it from other coumarins studied in this work. Our DFT computational studies on the three natural products of the same coumarin family docked into the active site of CYP3A4 (PDB 4D78) show different behavior for these coumarins at the active site. When the substrate is bergamottin, the importance of π-π stacking and hydrogen bonding, which can anchor the substrate in place, appears fundamental. In contrast, fraxidin and osthole show carbonyl coordination to iron. Our docking calculations show that the bergamottin tendency towards π-π stacking is important and likely influences its interactions with the heme group of CYP3A4.


Assuntos
Citrus paradisi/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico/fisiologia , Citrus paradisi/química , Cristalografia por Raios X/métodos , Furocumarinas/química , Heme/química , Heme/metabolismo , Humanos , Ligação de Hidrogênio
10.
Pharmacol Res ; 158: 104871, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413482

RESUMO

Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. Imperatorin (IMP), a main bioactive component of Angelica dahurica Radix, has been reported to possess several pharmacological effects including potential anti-colitis, anti-arthritis and anti-tumor activities. In this work, we demonstrated that IMP is a promising agent for the treatment of muscle wasting in cancer cachexia. IMP (5-20 µM) dose-dependently attenuated TCM-induced C2C12 myotube atrophy and prevented the induction of E3 ubiquitin ligases muscle RING-finger containing protein-1 (MuRF1) and muscle atrophy Fbox protein (Atrogin-1/MAFbx). Moreove, IMP administration significantly improved chief features of cancer cachexia in vivo, with significant prevention of the loss of body weight and deleterious wasting of multiple tissues, including skeletal muscle, fat and kidney and decreased expression of MuRF1 and Atrogin-1 in cachectic muscles. Cellular signaling pathway analysis showed that IMP selectively inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in vitro and in vivo, and surface plasmon resonance (SPR) affinity experiments further demonstrated IMP bound to STAT3 in a concentration-dependent resonance manner. Molecular docking results revealed that IMP binds to the SH2 domain of STAT3, forming a hydrogen bond interaction with Arg-609, and a Sigma-Pi interaction with Lys-591. Mechanism analysis demonstrated that STAT3 overexpression markedly weakens the improvements of IMP on myotube atrophy and muscle wasting of cancer cachexia, indicating that STAT3 mediated the therapeutic effect of IMP. All these favorable results indicated that IMP is a new potential therapeutic candidate for cancer cachexia.


Assuntos
Caquexia/metabolismo , Furocumarinas/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Caquexia/tratamento farmacológico , Caquexia/patologia , Relação Dose-Resposta a Droga , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estrutura Secundária de Proteína , Fator de Transcrição STAT3/química
11.
Insect Mol Biol ; 29(1): 112-123, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31393031

RESUMO

The parsnip webworm, Depressaria pastinacella, is restricted to two hostplant genera containing six structurally diverse furanocoumarins. Of these, imperatorin is detoxified by a specialized cytochrome P450, CYP6AB3. A previous whole-larva transcriptome analysis confirmed the presence of nine transcripts that belong to the CYP6AE subfamily. Here, by examining midgut-specific gene expression patterns we determined that CYP6AE89 transcripts were highly expressed and furanocoumarin-inducible. Computer docking and energy-minimization of a CYP6AE89 model with all six furanocoumarins showed that 5-methoxylated bergapten and 8-methoxylated xanthotoxin had the smallest distances from the heme to the proton-donor residue in the catalytic I-helix, and that the 5,8-dimethoxylated isopimpinellin and bergapten had the smallest energy-minimized distance from the heme oxygen to the furan ring double bond. To evaluate this prediction, we expressed the CYP6AE89 protein in an Escherichia coli system, and used it to detect high catalytic activity against the two mono-methoxylated linear furanocoumarins - bergapten and xanthotoxin - and weak activity against isopimpinellin. Thus, CYP6AE89, like CYP6AB3, is probably specialized for detoxifying only a subset of hostplant furanocoumarins. A maximum-likelihood tree built with six representative lepidopterans with manually annotated cytochrome P450s shows that CYP6AE89 may have evolved much faster than the other CYP6AE proteins, possibly indicative of host selection pressure.


Assuntos
Sistema Enzimático do Citocromo P-450 , Furocumarinas/metabolismo , Mariposas/enzimologia , Animais , Furocumarinas/química , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Heracleum/química , Inativação Metabólica , Larva/enzimologia , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Pastinaca/química
12.
Xenobiotica ; 50(4): 401-407, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31317804

RESUMO

1. We investigated whether bergamottin would be useful for evaluating CYP3A-mediated intestinal metabolism in rats utilising its characteristics as a mechanism-based inhibitor of CYP3A.2. Buspirone and fexofenadine, probe substrates of CYP3A and P-glycoprotein (P-gp), respectively, were orally co-administered to rats with bergamottin (2.5 mg/kg) or orally administered 2 h after bergamottin pre-treatment. The effect of bergamottin pre-treatment on hepatic CYP3A specifically was investigated with intravenous administration of buspirone. The kobs of bergamottin for CYP3A was calculated based on the portal unbound Cmax.3. Co-administration of bergamottin significantly increased the AUC0-inf for buspirone and fexofenadine by 1.6-fold and 1.7-fold, respectively, indicating that bergamottin inhibited both CYP3A and P-gp.4. Bergamottin pre-treatment significantly elevated the AUC0-inf of oral buspirone by 3.7-fold but exerted no effect on the pharmacokinetics of intravenous buspirone, indicating that bergamottin pre-treatment selectively inhibited CYP3A-mediated intestinal metabolism without affecting the hepatic CYP3A. These findings were supported by the result that the kobs (0.00000118 min-1) of bergamottin for CYP3A was lower than the kdeg (0.0005 min-1) for CYP3A. Furthermore, bergamottin pre-treatment did not affect the pharmacokinetics of oral fexofenadine, suggesting that P-gp was not influenced.5. These profiles of bergamottin enable the convenient assessment of CYP3A-mediated intestinal metabolism.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Furocumarinas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Transporte Biológico , Buspirona , Fígado/metabolismo , Masculino , Ratos , Terfenadina/análogos & derivados
13.
Sci Rep ; 9(1): 15743, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673107

RESUMO

Breast cancer is one of the biggest global dilemmas and its current therapy is to target the hormone receptors by the use of partial agonists/antagonists. Potent drugs for breast cancer treatment are Tamoxifen, Trastuzumab, Paclitaxel, etc. which show adverse effects and resistance in patients. The aim of the study has been on certain phytochemicals which has potent actions on ERα, PR, EGFR and mTOR inhibition. The current study is performed by the use of molecular docking as protein-ligand interactions play a vital role in drug design. The 3D structures of ERα, PR, EGFR and mTOR were obtained from the protein data bank and docked with 23 3D PubChem structures of furanocoumarin compounds using FlexX. Drug-likeness property was checked by applying the Lipinski's rule of five on the furanocoumarins to evaluate anti-breast cancer activity. Antagonist and inhibition assay of ERα, EGFR and mTOR respectively has been performed using appropriate in-vitro techniques. The results confirm that Xanthotoxol has the best docking score for breast cancer followed by Bergapten, Angelicin, Psoralen and Isoimperatorin. Further, the in-vitro results also validate the molecular docking analysis. This study suggests that the selected furanocoumarins can be further investigated and evaluated for breast cancer treatment and management strategies.


Assuntos
Receptor alfa de Estrogênio/antagonistas & inibidores , Furocumarinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Domínio Catalítico , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Furocumarinas/metabolismo , Furocumarinas/uso terapêutico , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR/metabolismo
14.
Molecules ; 24(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718071

RESUMO

Psoralen (P) and isopsoralen (IP) are the main active ingredients in the dried fruit of Psoralen corylifolia L. (PC), with a wide range of pharmacology activities. The intestinal bacteria biotransformation plays a central role in the metabolism of the complex ingredients in traditional Chinese medicine (TCM). Our study aimed to investigated the metabolic profile of P and IP in the intestinal condition, co-cultured with human fecal bacteria anaerobically. Four bio-transforming products were obtained, including 6,7-furano-hydrocoumaric acid (P-1) and 6,7-furano-hydro- coumaric acid methyl ester (P-2), which transformed from P, and 5,6-furano-hydrocoumaric acid (IP-1) and 5,6-furano-hydrocoumaric acid methyl ester (IP-2), which were transformed from IP. It is worth mentioning that IP-2 is a new compound that has not been published. Their structures were analyzed based on their spectroscopic data. Moreover, a highly sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was used to characterize the metabolic pathways of P, IP, and their bio-transforming products in the reaction samples. In addition, the dampening effects against the oxidative stress of P, IP, and their bio-transforming products by human intestinal flora were estimated in vitro via the human colorectal cells (HCT116) and heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) cell lines. The results showed that the metabolites have stronger activity than P and IP, which possibly provides a basis for elucidating the treating mechanisms of PC extract against inflammatory bowel disease.


Assuntos
Biotransformação , Ficusina/metabolismo , Furocumarinas/metabolismo , Microbioma Gastrointestinal , Cromatografia Líquida de Alta Pressão , Ficusina/química , Furocumarinas/química , Humanos , Limite de Detecção , Metabolômica/métodos , Estrutura Molecular , Estresse Oxidativo , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480231

RESUMO

Human cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme. Some drugs and natural compounds can act as suicide (mechanism-based) inactivators of CYP3A4, leading to unanticipated drug-drug interactions, toxicity and therapeutic failures. Despite significant clinical and toxicological implications, the mechanism-based inactivation remains incompletely understood. This study provides the first direct insights into the interaction of CYP3A4 with three suicide substrates: mibefradil, an antihypertensive drug quickly withdrawn from the market; a semi-synthetic antibiotic azamulin; and a natural furanocoumarin, 6',7'-dihydroxybergamottin. Novel structural findings help better understand the suicide substrate binding and inhibitory mechanism, and can be used to improve the predictability of the binding ability, metabolic sites and inhibitory/inactivation potential of newly developed drugs and other chemicals relevant to public health.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Furocumarinas/química , Furocumarinas/metabolismo , Mibefradil/química , Mibefradil/metabolismo , Triazóis/química , Triazóis/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Especificidade por Substrato
16.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934718

RESUMO

Methoxylated coumarins represent a large proportion of officinal value coumarins while only one enzyme specific to bergaptol O-methylation (BMT) has been identified to date. The multiple types of methoxylated coumarins indicate that at least one unknown enzyme participates in the O-methylation of other hydroxylated coumarins and remains to be identified. Combined transcriptome and metabonomics analysis revealed that an enzyme similar to caffeic acid O-methyltransferase (COMT-S, S is short for similar) was involved in catalyzing all the hydroxylated coumarins in Peucedanum praeruptorum. However, the precise molecular mechanism of its substrate heterozygosis remains unsolved. Pursuing this question, we determined the crystal structure of COMT-S to clarify its substrate preference. The result revealed that Asn132, Asp271, and Asn325 govern the substrate heterozygosis of COMT-S. A single mutation, such as N132A, determines the catalytic selectivity of hydroxyl groups in esculetin and also causes production differences in bergapten. Evolution-based analysis indicated that BMT was only recently derived as a paralogue of caffeic acid O-methyltransferase (COMT) via gene duplication, occurring before the Apiaceae family divergence between 37 and 100 mya. The present study identified the previously unknown O-methylation steps in coumarin biosynthesis. The crystallographic and mutational studies provided a deeper understanding of the substrate preference, which can be used for producing specific O-methylation coumarins. Moreover, the evolutionary relationship between BMT and COMT-S was clarified to facilitate understanding of evolutionary events in the Apiaceae family.


Assuntos
Apiaceae/metabolismo , Vias Biossintéticas , Cumarínicos/metabolismo , Sequência de Aminoácidos , Apiaceae/química , Apiaceae/genética , Cumarínicos/química , Mineração de Dados , Evolução Molecular , Furocumarinas/química , Furocumarinas/metabolismo , Duplicação Gênica , Heterozigoto , Metilação , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , Análise de Sequência de RNA , Especificidade por Substrato , Transcriptoma/genética , Umbeliferonas/química , Umbeliferonas/metabolismo
17.
Regul Toxicol Pharmacol ; 103: 1-9, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634019

RESUMO

Isopsoralen is a major active and quality-control component of Fructus Psoraleae, but lacks a full safety evaluation. We evaluated the oral toxicity of isopsoralen in Wistar rats treated for 3 months at doses of 0, 3.5, 7.0, and 14 mg/kg. Additionally, the plasma metabolomics of isopsoralen in male and female rats treated for 3 months at doses of 0 and 14 mg/kg were investigated by gas chromatography-mass spectrometry. Many abnormalities were observed in the isopsoralen-treated rats, including suppression of body weight gain, and changes in serum biochemical parameters and visceral coefficients. Histopathological changes in liver, pancreatic, and reproductive system tissues were also observed in the isopsoralen-treated rats. The metabolomic analyses showed alterations in many metabolites (19 in female rats; 28 in male rats) after isopsoralen administration. The significant changes in these metabolites revealed metabolomic alterations in the isopsoralen-treated rats, especially in amino acid metabolism regardless of sex, including phenylalanine, tyrosine, and tryptophan biosynthesis and glycine, serine, and threonine metabolism. Furthermore, fatty acid metabolism comprised the main affected pathways in female rats, while lipid metabolism and energy metabolism were the main affected pathways in male rats.


Assuntos
Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Furocumarinas/toxicidade , Caracteres Sexuais , Sistema Urogenital/efeitos dos fármacos , Sistema Urogenital/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Sistema Digestório/patologia , Relação Dose-Resposta a Droga , Feminino , Furocumarinas/administração & dosagem , Furocumarinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Ratos , Ratos Wistar , Testes de Toxicidade , Sistema Urogenital/patologia
18.
Nat Prod Res ; 33(6): 835-842, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29468895

RESUMO

The microbial transformations of peucedanin and oreoselon by the fungi Aspergillus niger and Aspergillus sp. were investigated for the first time. Incubation of peucedanin with A. niger yielded a new hydroxylated metabolite with high yield (56%), which was characterized as 2-(1-hydroxypropan-2-yl)-3-methoxy-7H-furo[3,2-g]chromen-7-one. Oreoselon was converted to a new reduced metabolite methyl 3-(2,3-dihydro-6-hydroxy-2-isopropyl-3-oxobenzofuran-5-yl)propanoate in biotransformation by Aspergillus sp. The structures of the metabolites were determined by spectroscopic methods including IR, EI-MS, 1H NMR, 13C NMR, and elemental analysis.


Assuntos
Aspergillus niger/metabolismo , Aspergillus/metabolismo , Biotransformação , Furocumarinas/metabolismo , Cumarínicos , Hidroxilação , Espectroscopia de Ressonância Magnética , Estrutura Molecular
19.
J Biol Chem ; 293(50): 19211-19212, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552114

RESUMO

The cytochromes P450 (CYPs) oxidatively transform a huge number of substrates in both prokaryotic and eukaryotic organisms, but the mechanisms by which they accommodate these diverse molecules remain unclear. A new study by Bart and Scott reports two co-crystal structures of CYP1A1 that reveal structural rearrangements and flexible interaction networks that explain how the active site cavity shapes itself around new ligands. These data open the door to an increased understanding of fundamental enzyme behavior and improved searches for anti-cancer compounds.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/metabolismo , Cloridrato de Erlotinib/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A1/química , Inibidores Enzimáticos/química , Cloridrato de Erlotinib/química , Furocumarinas/química , Humanos , Ligantes , Ligação Proteica , Especificidade por Substrato
20.
J Biol Chem ; 293(50): 19201-19210, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30254074

RESUMO

Human cytochrome P450 1A1 (CYP1A1) is an extrahepatic enzyme involved in the monooxygenation of structurally diverse compounds ranging from natural products to drugs and protoxins. Because CYP1A1 has a role in human carcinogenesis, inhibiting its activity may potentially aid in cancer chemoprevention, whereas utilizing CYP1A1's oxidative activity could help selectively activate anticancer prodrugs. Such potential therapeutic purposes require detailed knowledge of CYP1A1's interactions with potential ligands. Known CYP1A1 ligands also vary substantially in size, and it has not been apparent from a single existing CYP1A1 structure how larger, structurally diverse ligands are accommodated within the enclosed active site. Here, two new X-ray structures with the natural product furanocoumarin bergamottin (at 2.85 Å resolution) and the lung cancer drug erlotinib (3.0 Å) revealed binding orientations consistent with the formation of innocuous metabolites and of toxic metabolites, respectively. They also disclosed local changes in the roof of the active site that enlarge the active site and ultimately form a channel to the protein exterior. Although further structural modifications would be required to accommodate the largest CYP1A1 ligands, knowing which components of the active site are malleable provides powerful information for those attempting to use computational approaches to predict compound binding and substrate metabolism by this clinically relevant monooxygenase.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores Enzimáticos/metabolismo , Cloridrato de Erlotinib/metabolismo , Furocumarinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Cloridrato de Erlotinib/química , Furocumarinas/química , Humanos , Ligantes , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...