Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(9): 3603-8, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401543

RESUMO

It is well established that dorsal root ganglion (DRG) cells synthesize prostaglandin. However, the role that prostaglandin plays in the inflammatory hyperalgesia of peripheral tissue has not been established. Recently, we have successfully established a technique to inject drugs (3 µL) directly into the L5-DRG of rats, allowing in vivo identification of the role that DRG cell-derived COX-1 and COX-2 play in the development of inflammatory hyperalgesia of peripheral tissue. IL-1ß (0.5 pg) or carrageenan (100 ng) was administered in the L5-peripheral field of rat hindpaw and mechanical hyperalgesia was evaluated after 3 h. Administration of a nonselective COX inhibitor (indomethacin), selective COX-1 (valeryl salicylate), or selective COX-2 (SC-236) inhibitors into the L5-DRG prevented the hyperalgesia induced by IL-1ß. Similarly, oligodeoxynucleotide-antisense against COX-1 or COX-2, but not oligodeoxynucleotide-mismatch, decreased their respective expressions in the L5-DRG and prevented the hyperalgesia induced by IL-1ß in the hindpaw. Immunofluorescence analysis demonstrated that the amount of COX-1 and COX-2, constitutively expressed in TRPV-1(+) cells of the DRG, significantly increased after carrageenan or IL-1ß administration. In addition, indomethacin administered into the L5-DRG prevented the increase of PKCε expression in DRG membrane cells induced by carrageenan. Finally, the administration of EP1/EP2 (7.5 ng) or EP4 (10 µg) receptor antagonists into L5-DRG prevented the hyperalgesia induced by IL-1ß in the hindpaw. In conclusion, the results of this study suggest that the inflammatory hyperalgesia in peripheral tissue depends on activation of COX-1 and COX-2 in C-fibers, which contribute to the induction and maintenance of sensitization of primary sensory neurons.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Gânglios Espinais/enzimologia , Hiperalgesia/enzimologia , Hiperalgesia/patologia , Inflamação/enzimologia , Inflamação/patologia , Proteínas de Membrana/metabolismo , Animais , Carragenina/farmacologia , Inibidores de Ciclo-Oxigenase/administração & dosagem , Inibidores de Ciclo-Oxigenase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Técnicas de Silenciamento de Genes , Hiperalgesia/complicações , Indometacina/administração & dosagem , Indometacina/farmacologia , Inflamação/complicações , Interleucina-1beta/farmacologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Proteína Quinase C-épsilon/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/metabolismo
2.
Braz J Med Biol Res ; 32(4): 489-93, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10347815

RESUMO

Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.


Assuntos
Axotomia , Gânglios Espinais/enzimologia , NADPH Desidrogenase/metabolismo , Medula Espinal/enzimologia , Tartarugas/metabolismo , Animais , Feminino , Hiperalgesia , Região Lombossacral , Masculino , Degeneração Neural , Regeneração Nervosa
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;32(4): 489-93, Apr. 1999. ilus
Artigo em Inglês | LILACS | ID: lil-231743

RESUMO

Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.


Assuntos
Animais , Masculino , Feminino , Axotomia , Gânglios Espinais/enzimologia , NADPH Desidrogenase/metabolismo , Medula Espinal/enzimologia , Tartarugas , Hiperalgesia , Região Lombossacral , Degeneração Neural , Regeneração Nervosa , Nervo Isquiático
4.
Eur J Pharmacol ; 253(1-2): 101-6, 1994 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-8013536

RESUMO

Endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was examined in several areas of the central nervous system (CNS) as well as in the immune and endocrine tissues of rats chronically treated with morphine and submitted to naloxone-induced withdrawal. A specific fluorogenic substrate was used to determine the endopeptidase 22.19 activity. A non-uniform increase in endopeptidase 22.19 activity was detected in the CNS. The highest increase in endopeptidase 22.19 specific activity was found in the dorsal hippocampus (about 3.5-fold higher than control), followed by occipital and frontal cortex, substantia nigra, thalamus and hypothalamus. In peripheral tissues, a significant decrease of endopeptidase 22.19 was observed in the pineal gland, whereas the morphine withdrawal syndrome caused a slight but significant increase in lymphoid tissues such as lymph nodes and thymus. These findings are indicative of a possible participation of endopeptidase 22.19 in naloxone-induced withdrawal.


Assuntos
Encéfalo/enzimologia , Metaloendopeptidases/metabolismo , Morfina/toxicidade , Síndrome de Abstinência a Substâncias/enzimologia , Animais , Comportamento Animal/efeitos dos fármacos , Glândulas Endócrinas/enzimologia , Lobo Frontal/enzimologia , Gânglios Espinais/enzimologia , Hipotálamo/enzimologia , Tecido Linfoide/enzimologia , Masculino , Naloxona/administração & dosagem , Naloxona/farmacologia , Lobo Occipital/enzimologia , Ratos , Ratos Wistar , Substância Negra/enzimologia , Tálamo/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA