Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(24): 14832-14848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866624

RESUMO

Onchocerciasis is a vector-borne disease caused by the filarial nematode Onchocerca volvulus, which is responsible for most of the visual impairments recorded in Africa, Asia and the Americas. It is known that O. volvulus has similar molecular and biological characteristics as Onchocerca ochengi in cattle. This study was designed to screen for immunogenic epitopes and binding pockets of O. ochengi IMPDH and GMPR ligands using immunoinformatic approaches. In this study, a total of 23 B cell epitopes for IMPDH and 7 B cell epitopes for GMPR were predicted using ABCpred tool, Bepipred 2.0 and Kolaskar and Tongaonkar methods. The CD4+ Th computational results showed 16 antigenic epitopes from IMPDH with strong binding affinity for DRB1_0301, DRB3_0101, DRB1_0103 and DRB1_1501 MHC II alleles while 8 antigenic epitopes from GMPR were predicted to bind DRB1_0101 and DRB1_0401 MHC II alleles, respectively. For the CD8+ CTLs analysis, 8 antigenic epitopes from IMPDH showed strong binding affinity to human leukocyte antigen HLA-A*26:01, HLA-A*03:01, HLA-A*24:02 and HLA-A*01:01 MHC I alleles while 2 antigenic epitopes from GMPR showed strong binding affinity to HLA-A*01:01 allele, respectively. The immunogenic B cell and T cell epitopes were further evaluated for antigenicity, non-alllergernicity, toxicity, IFN-gamma, IL4 and IL10. The docking score revealed favorable binding free energy with IMP and MYD scoring the highest binding affinity at -6.6 kcal/mol with IMPDH and -8.3 kcal/mol with GMPR. This study provides valuable insight on IMPDH and GMPR as potential drug targets and for the development of multiple epitope vaccine candidates.Communicated by Ramaswamy H. Sarma.


Assuntos
Onchocerca , Vacinas , Humanos , Animais , Bovinos , Onchocerca/metabolismo , Imunoinformática , GMP Redutase/química , GMP Redutase/metabolismo , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Epitopos de Linfócito B , Epitopos de Linfócito T , Guanosina , Inosina , Antígenos HLA-A
2.
Proteins ; 90(1): 200-217, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34368983

RESUMO

Human GMP reductase (hGMPR) enzyme is involved in a cellular metabolic pathway, converting GMP into IMP, and also it is an important target for anti-leukemic agents. Present computational investigations explain dynamical behavior of water molecules during the conformational transition process from GMP to IMP using molecular dynamics simulations. Residues at substrate-binding site of cancerous protein (PDB Id. 2C6Q) are mostly more dynamic in nature than the normal protein (PDB Id. 2BLE). Nineteen conserved water molecules are identified at the GMP/IMP binding site and are classified as (i) conserved stable dynamic and (ii) infrequent dynamic. Water molecules W11, W14, and W16 are classified as conserved stable dynamic due to their immobile character, whereas remaining water molecules (W1, W2, W3, W4, W5, W7, W8, W9, W10, W12, W13, W15, W17, W18, and W19) are infrequent with dynamic nature. Entrance or displacement of these infrequent water molecules at GMP/IMP sites may occur due to forward and backward movement of reference residues involving ligands. Four water molecules of hGMPR-I and nine water molecules of hGMPR-II are observed in repetitive transitions from GMP to IMP pathway, which indicates discrimination between two isoforms of hGMPRs. Water molecules in cancerous protein are more dynamic and unstable compared to normal protein. These water molecules execute rare dynamical events at GMP binding site and could assist in detailed understanding of conformational transitions that influence the hGMPR's biological functionality. The present study should be of interest to the experimental community engaged in leukemia research and drug discovery for CML cancer.


Assuntos
GMP Redutase , Guanosina Monofosfato , Água , Humanos , GMP Redutase/química , GMP Redutase/metabolismo , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica , Água/química
3.
Nat Commun ; 11(1): 1837, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296055

RESUMO

Guanosine 5'-monophosphate reductase (GMPR) is involved in the purine salvage pathway and is conserved throughout evolution. Nonetheless, the GMPR of Trypanosoma brucei (TbGMPR) includes a unique structure known as the cystathionine-ß-synthase (CBS) domain, though the role of this domain is not fully understood. Here, we show that guanine and adenine nucleotides exert positive and negative effects, respectively, on TbGMPR activity by binding allosterically to the CBS domain. The present structural analyses revealed that TbGMPR forms an octamer that shows a transition between relaxed and twisted conformations in the absence and presence of guanine nucleotides, respectively, whereas the TbGMPR octamer dissociates into two tetramers when ATP is available instead of guanine nucleotides. These findings demonstrate that the CBS domain plays a key role in the allosteric regulation of TbGMPR by facilitating the transition of its oligomeric state depending on ligand nucleotide availability.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , GMP Redutase/química , GMP Redutase/metabolismo , Trypanosoma brucei brucei/enzimologia , Regulação Alostérica , Cristalografia por Raios X , Cinética , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
4.
Biochemistry ; 57(22): 3146-3154, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547266

RESUMO

The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling 31P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the 31P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP+, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP+. The presence of D2O perturbed the relaxation of the 31P nuclei in E·IMP·NADP+ but not in E·GMP·NADP+, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of Vmax by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.


Assuntos
GMP Redutase/química , GMP Redutase/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Sítios de Ligação , Catálise , Guanosina/metabolismo , Cinética , Imageamento por Ressonância Magnética , Modelos Moleculares , NADP/metabolismo , Ligação Proteica
5.
J Biol Chem ; 291(44): 22988-22998, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27613871

RESUMO

Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.


Assuntos
Coenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , GMP Redutase/química , Biocatálise , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP Redutase/genética , GMP Redutase/metabolismo , Nucleotídeos de Guanina/química , Nucleotídeos de Guanina/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , NADP/química , NADP/metabolismo , Ligação Proteica
6.
Crit Rev Biochem Mol Biol ; 47(3): 250-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22332716

RESUMO

The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (ß/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.


Assuntos
GMP Redutase/química , Guanosina Monofosfato/química , IMP Desidrogenase/química , Amônia/química , Domínio Catalítico , Cátions Monovalentes/química , Humanos , Cinética , Ligantes , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Água/química
7.
Nat Chem Biol ; 7(12): 950-8, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037469

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.


Assuntos
GMP Redutase/metabolismo , IMP Desidrogenase/metabolismo , Biocatálise , Cristalografia por Raios X , GMP Redutase/química , Guanosina Monofosfato/biossíntese , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , IMP Desidrogenase/química , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , NADP/química , NADP/metabolismo , Teoria Quântica , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
8.
Mol Biosyst ; 7(4): 1289-305, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21298178

RESUMO

Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.


Assuntos
Escherichia coli/enzimologia , GMP Redutase , Ligantes , Proteínas Recombinantes , Termodinâmica , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Escherichia coli/genética , GMP Redutase/química , GMP Redutase/genética , GMP Redutase/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...