Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019733

RESUMO

Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase ß-galactosidase (ß-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) ß-Gal and four disease-related ß-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing ß-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Animais , Cães , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , 1-Desoxinojirimicina/farmacologia , beta-Galactosidase/metabolismo
2.
CRISPR J ; 6(1): 17-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629845

RESUMO

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Assuntos
Gangliosidose GM1 , Humanos , Gangliosidose GM1/terapia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Alelos
3.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010656

RESUMO

GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal ß-galactosidase (ß-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death. No therapy is currently available for this lysosomal storage disease. Here, we describe a proof-of-concept preclinical study toward the development of enzyme replacement therapy (ERT) for GM1-gangliosidosis using a recombinant murine ß-Gal fused to the plant lectin subunit B of ricin (mß-Gal:RTB). We show that long-term, bi-weekly systemic injection of mß-Gal:RTB in the ß-Gal-/- mouse model resulted in widespread internalization of the enzyme by cells of visceral organs, with consequent restoration of enzyme activity. Most importantly, ß-Gal activity was detected in several brain regions. This was accompanied by a reduction of accumulated GM1, reversal of neuroinflammation, and decrease in the apoptotic marker caspase 3. These results indicate that the RTB lectin delivery module enhances both the CNS-biodistribution pattern and the therapeutic efficacy of the ß-Gal ERT, with the potential to translate to a clinical setting for the treatment of GM1-gangliosidosis.


Assuntos
Gangliosídeo G(M1) , Gangliosidose GM1 , Animais , Sistema Nervoso Central/metabolismo , Terapia de Reposição de Enzimas , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Lectinas/uso terapêutico , Camundongos , Distribuição Tecidual , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
4.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807262

RESUMO

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Assuntos
Gangliosidose GM1 , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , beta-Galactosidase/química
5.
Chem Rec ; 21(11): 2980-2989, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34816592

RESUMO

A short survey on selected ß-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal ß-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.


Assuntos
Gangliosidoses , Gangliosidose GM1 , Mucopolissacaridose IV , beta-Galactosidase/antagonistas & inibidores , Gangliosidose GM1/tratamento farmacológico , Humanos , Lisossomos , Mucopolissacaridose IV/tratamento farmacológico
6.
Brain Dev ; 43(1): 45-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32736903

RESUMO

In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos/terapia , Chaperonas Moleculares/uso terapêutico , Deficiências na Proteostase/terapia , Estresse do Retículo Endoplasmático/fisiologia , Doença de Fabry/tratamento farmacológico , Gangliosidose GM1/tratamento farmacológico , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/fisiopatologia
7.
Mol Genet Genomic Med ; 8(10): e1371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32779865

RESUMO

BACKGROUND: In GM1 gangliosidosis the lack of function of ß-galactosidase results in an accumulation of GM1 ganglioside and related glycoconjugates in visceral organs, and particularly in the central nervous system, leading to severe disability and premature death. In the type 2 form of the disease, early intervention would be important to avoid precocious complications. To date, there are no effective therapeutic options in preventing progressive neurological deterioration. Substrate reduction therapy with Miglustat, a N-alkylated sugar that inhibits the enzyme glucosylceramide synthase, has been proposed for the treatment of several lysosomal storage disorders such as Gaucher type 1 and Niemann Pick Type C diseases. However, data on Miglustat therapy in patients with GM1 gangliosidosis are still scarce. METHODS: We report here the results of Miglustat administration in four Italian children (average age: 55 months, range 20-125) affected by GM1 gangliosidosis type 2 treated in three different Italian pediatric hospitals specialized in metabolic diseases. CONCLUSION: This treatment was safe and relatively well tolerated by all patients, with stabilization and/or slowing down of the neurological progression in three subjects.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Gangliosidose GM1/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/uso terapêutico , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Adolescente , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/efeitos dos fármacos , Criança , Pré-Escolar , Tolerância a Medicamentos , Feminino , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Inibidores de Glicosídeo Hidrolases/efeitos adversos , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Lactente , Masculino
8.
Hum Genet ; 139(5): 657-673, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32219518

RESUMO

GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with ß-galactosidase (ß-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated ß-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y ß-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y ß-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type ß-Gal against thermal degradation. Although NN-DGJ showed higher affinity to ß-Gal, it did not show a significant enhancement in p.D151Y ß-Gal activity. However, NB-DGJ promoted p.D151Y ß-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.


Assuntos
1-Desoxinojirimicina/farmacologia , Fibroblastos/metabolismo , Gangliosidose GM1/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , beta-Galactosidase/metabolismo , 1-Desoxinojirimicina/química , Pré-Escolar , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/patologia , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Chaperonas Moleculares/farmacologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica , Transporte Proteico , beta-Galactosidase/química , beta-Galactosidase/genética
9.
Metab Brain Dis ; 34(2): 495-503, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712135

RESUMO

Gangliosidoses (GM1 and GM2 gangliosidosis) are rare, autosomal recessive progressive neurodegenerative lysosomal storage disorders caused by defects in the degradation of glycosphingolipids. We aimed to investigate clinical, biochemical and molecular genetic spectrum of Turkish patients with infantile gangliosidoses and examined the potential role of serum aspartate transaminase levels as a biomarker. We confirmed the diagnosis of GM1 and GM2 gangliosidosis based on clinical findings with specific enzyme and/or molecular analyses. We retrospectively reviewed serum aspartate transaminase levels of patients with other biochemical parameters. Serum aspartate transaminase level was elevated in all GM1 and GM2 gangliosidosis patients in whom the test was performed, along with normal alanine transaminase. Aspartate transaminase can be a biochemical diagnostic clue for infantile gangliosidoses. It might be a simple but important biomarker for diagnosis, follow up, prognosis and monitoring of the response for the future therapies in these patients.


Assuntos
Aspartato Aminotransferases/metabolismo , Biomarcadores/análise , Gangliosidoses/tratamento farmacológico , Doença de Sandhoff/tratamento farmacológico , Aspartato Aminotransferases/efeitos dos fármacos , Feminino , Gangliosidoses GM2/tratamento farmacológico , Gangliosidose GM1/tratamento farmacológico , Humanos , Masculino , Estudos Retrospectivos
10.
Bioorg Med Chem ; 26(20): 5462-5469, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270003

RESUMO

(5aR)-5a-C-pentyl-4-epi-isofagomine 1 is a powerful inhibitor of lysosomal ß-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. We report herein an improved synthesis of this compound and analogs (5a-C-methyl, pentyl, nonyl and phenylethyl derivatives), and a crystal structure of a synthetic intermediate that confirms its configuration resulting from the addition of a Grignard reagent. These compounds were evaluated as glycosidase inhibitors and their potential as chaperones for mutant lysosomal galactosidases determined. Based on these results and on docking studies, the 5-C-pentyl derivative 1 was selected as the optimal structure for further investigations: this compound induces the maturation of mutated ß-galactosidase in fibroblasts of a GM1-gangliosidosis patient and promote the decrease of keratan sulfate and oligosaccharide load in patient cells. Compound 1 is clearly capable of restoring ß-galactosidase activity and of promoting maturation of the protein, which should result in significant clinical benefit. These properties strongly support the development of compound 1 for the treatment of GM1-gangliosidosis and Morquio disease type B patients harboring ß-galactosidase mutations sensitive to pharmacological chaperoning.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gangliosidose GM1/tratamento farmacológico , Imino Piranoses/química , Imino Piranoses/farmacologia , Mucopolissacaridose IV/tratamento farmacológico , beta-Galactosidase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Gangliosidose GM1/enzimologia , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Humanos , Imino Piranoses/síntese química , Imino Piranoses/uso terapêutico , Simulação de Acoplamento Molecular , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/metabolismo , Mutação/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
Nanomedicine (Lond) ; 12(23): 2591-2606, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29111890

RESUMO

AIM: Polymersomes are created to deliver an enzyme-based therapy to the brain in lysosomal storage disease patients. MATERIALS & METHODS: Polymersomes are formed via the injection method using poly(ethylene glycol)-b-poly(lactic acid) (PEGPLA) and bound to apolipoprotein E, to create a brain-targeted delivery vehicle. RESULTS: Polymersomes have a smallest average diameter of 145 ± 21 nm and encapsulate ß-galactosidase at 72.0 ± 12.2% efficiency. PEGPLA polymersomes demonstrate limited release at physiologic pH (7.4), with a burst release at the acidic pH (4.8) of the lysosome. PEGPLA polymersomes facilitate delivery of active ß-galactosidase to an in vitro model of GM1 gangliosidosis. CONCLUSION: The foundation has been laid for testing of PEGPLA polymersomes to deliver enzymatic treatments to the brain in lysosomal storage disorders for the first time.


Assuntos
Portadores de Fármacos/química , Terapia de Reposição de Enzimas/métodos , Lactatos/química , Polietilenoglicóis/química , beta-Galactosidase/farmacologia , Encéfalo/metabolismo , Linhagem Celular , Liberação Controlada de Fármacos , Gangliosidose GM1/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Tamanho da Partícula , Permeabilidade , Propriedades de Superfície
12.
Bioorg Med Chem Lett ; 27(15): 3431-3435, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600215

RESUMO

N-Functionalized amino(hydroxymethyl)cyclopentanetriols are potent inhibitors of ß-d-galactosidases and, for the first time, could be shown to act as pharmacological chaperones for GM1-gangliosidosis-associated lysosomal acid ß-galactosidase thus representing a new structural type of pharmacological chaperones for this lysosomal storage disease.


Assuntos
Ciclopentanos/química , Ciclopentanos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/antagonistas & inibidores , Aminação , Animais , Bovinos , Gangliosidose GM1/enzimologia , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Metilação , beta-Galactosidase/metabolismo
13.
Metab Brain Dis ; 32(5): 1529-1536, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28577204

RESUMO

Juvenile and adult GM1-gangliosidosis are invariably characterized by progressive neurological deterioration. To date only symptomatic therapies are available. We report for the first time the positive results of Miglustat (OGT 918, N-butyl-deoxynojirimycin) treatment on three Italian GM1-gangliosidosis patients. The first two patients had a juvenile form (enzyme activity ≤5%, GLB1 genotype p.R201H/c.1068 + 1G > T; p.R201H/p.I51N), while the third patient had an adult form (enzyme activity about 7%, p.T329A/p.R442Q). Treatment with Miglustat at the dose of 600 mg/day was started at the age of 10, 17 and 28 years; age at last evaluation was 21, 20 and 38 respectively. Response to treatment was evaluated using neurological examinations in all three patients every 4-6 months, the assessment of Movement Disorder-Childhood Rating Scale (MD-CRS) in the second patient, and the 6-Minute Walking Test (6-MWT) in the third patient. The baseline neurological status was severely impaired, with loss of autonomous ambulation and speech in the first two patients, and gait and language difficulties in the third patient. All three patients showed gradual improvement while being treated; both juvenile patients regained the ability to walk without assistance for few meters, and increased alertness and vocalization. The MD-CRS class score in the second patient decreased from 4 to 2. The third patient improved in movement and speech control, the distance covered during the 6-MWT increased from 338 to 475 m. These results suggest that Miglustat may help slow down or reverse the disease progression in juvenile/adult GM1-gangliosidosis.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Gangliosidose GM1/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/uso terapêutico , 1-Desoxinojirimicina/uso terapêutico , Adulto , Fatores Etários , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Progressão da Doença , Feminino , Seguimentos , Marcha , Gangliosidose GM1/genética , Gangliosidose GM1/psicologia , Genótipo , Humanos , Transtornos da Linguagem/tratamento farmacológico , Transtornos da Linguagem/psicologia , Destreza Motora , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/psicologia , Testes Neuropsicológicos , Resultado do Tratamento , Caminhada , Adulto Jovem , beta-Galactosidase/genética
14.
Carbohydr Res ; 429: 71-80, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27063389

RESUMO

From an easily available partially protected analog of 1-deoxy-L-gulo-nojirimycin, by chain-branching at C-4 and suitable modification, lipophilic analogs of the powerful ß-D-galactosidase inhibitor 4-epi-isofagomine have been prepared. New compounds exhibit considerably improved inhibitory activities when compared with the unsubstituted parent compound and may serve as leads toward new pharmacological chaperones for GM1-gangliosidosis and Morquio B disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Imino Piranoses/síntese química , beta-Galactosidase/antagonistas & inibidores , 1-Desoxinojirimicina/química , Gangliosidose GM1/tratamento farmacológico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imino Piranoses/química , Mucopolissacaridose IV/tratamento farmacológico , beta-Galactosidase/química
15.
Chem Commun (Camb) ; 52(32): 5497-515, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27043200

RESUMO

Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.


Assuntos
Carboidratos/química , Doença de Fabry/tratamento farmacológico , Gangliosidose GM1/tratamento farmacológico , Doença de Gaucher/tratamento farmacológico , Chaperonas Moleculares/uso terapêutico , Mimetismo Molecular , Doença de Fabry/metabolismo , Gangliosidose GM1/metabolismo , Doença de Gaucher/metabolismo , Humanos
16.
Mol Genet Metab ; 117(2): 199-209, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26766614

RESUMO

New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid ß-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid ß-galactosidase enzyme were produced using a plant-based bioproduction platform. ß-gal:RTB and RTB:ß-gal fusion products retained both lectin activity and ß-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived ß-galactosidase. In contrast, plant-derived ß-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native ß-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both ß-gal:RTB and RTB:ß-gal were processed to the ~64kDa "activated" ß-gal form; the RTB lectin was cleaved and rapidly degraded. The activated ß-gal was still detected at 48h suggesting interactions with protective protein/cathepsin A. Uptake-saturation analyses indicated that the RTB adsorptive-mediated mechanisms of ß-gal:RTB supported significantly greater accumulation of ß-galactose activity in fibroblasts compared to the receptor-mediated mechanisms of the mammalian cell-derived ß-gal. These data demonstrate that plant-made ß-gal:RTB functions as an effective replacement enzyme for GM1-gangliosidosis - delivering enzyme into cells, enabling essential lysosomal processing, and mediating disease substrate clearance at the cellular level. RTB provides novel uptake behaviors and thus may provide new receptor-independent strategies that could broadly impact lysosomal disease treatments.


Assuntos
Gangliosidose GM1/tratamento farmacológico , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/metabolismo , Células Cultivadas , Terapia de Reposição de Enzimas , Fibroblastos/enzimologia , Humanos , Cinética , Lisossomos/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Nicotiana , beta-Galactosidase/química , beta-Galactosidase/genética
17.
Carbohydr Res ; 420: 6-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717544

RESUMO

Electrophilic fluorination of an exocyclic methoxymethylene enol ether derived from N-tert-butyloxycarbonyl-1,5-dideoxy-1,5-imino-3,4-O-isopropylidene-D-erythro-pent-2-ulose (11) provided the 5-fluoro derivative of the powerful ß-galactosidase inhibitor 4-epi-isofagomine (8). This structural alteration, in combination with N-alkylation, led to considerably improved α-galactosidase selectivity. New compounds may serve as leads en route to new pharmacological chaperones for Fabry's disease.


Assuntos
Inibidores Enzimáticos/síntese química , Galactosidases/antagonistas & inibidores , Imino Piranoses/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/enzimologia , Halogenação , Humanos , Imino Piranoses/química , Imino Piranoses/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
18.
Brain Dev ; 38(2): 175-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26259553

RESUMO

INTRODUCTION: Galactosialidosis is a rare lysosomal storage disease caused by a combined deficiency of GM1 ß-galactosidase (ß-gal) and neuraminidase secondary to a defect of a lysosomal enzyme protective protein/cathepsin A (PPCA) and mutation in CTSA gene. Three subtypes are recognized: early infantile, late infantile, and juvenile/adult. There is no specific therapy for patients with galactosialidosis at this time. OBJECTIVES: The aim of this study was to determine the chaperone effect of N-octyl-4-epi-ß-valienamine (NOEV) on ß-gal proteins in skin fibroblasts of PPCA-deficit patients. METHODS: ß-Gal and neuraminidase activities were measured for the diagnosis of the patients with galactosialidosis. Western blotting for PPCA protein and direct sequencing for CTSA gene were performed. Cultured skin fibroblast were treated with NOEV. RESULTS: We report four novel patients with galactosialidosis: one had the early infantile form and the other three had the juvenile/adult form. We found that NOEV stabilized ß-gal activity in lysate from cultured skin fibroblasts from these patients. Treatment with NOEV significantly enhanced ß-gal activity in cultured skin fibroblasts in the absence of PPCA. CONCLUSIONS: Our results indicate the possibility that NOEV chaperone therapy might have a beneficial effect, at least in part, for patients with galactosialidosis.


Assuntos
Gangliosidose GM1/tratamento farmacológico , Hexosaminas/farmacologia , Adolescente , Adulto , Catepsina A/metabolismo , Células Cultivadas , Pré-Escolar , Fibroblastos/efeitos dos fármacos , Gangliosidose GM1/enzimologia , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Humanos , Recém-Nascido , Chaperonas Moleculares/farmacologia , Mutação , beta-Galactosidase/metabolismo
19.
J Pharm Pharmacol ; 67(8): 1133-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25851126

RESUMO

OBJECTIVES: GM1-gangliosidosis is an inherited disorder characterized by the accumulation of GM1-gangliosides in many tissues and organs, particularly in the brain. Currently, there is no treatment available for patients with ganglioside storage diseases. Therefore, we investigated the effects of cyclodextrins (CyDs) on the GM1-ganglioside level in EA1 cells, fibroblasts from patients with GM1-gangliosidosis. METHODS: The concentrations of cholesterol and phospholipids in supernatants were determined by Cholesterol E-test Wako and Phospholipid C-test Wako, respectively. The effects of CyDs on GM1-ganglioside levels in EA1 cells using fluorescence-labelled cholera toxin B-subunit, which can bind to GM1-gangliosides specifically, were investigated by flow cytometry and confocal laser scanning microscopy. KEY FINDINGS: The treatment with methylated CyDs, hydroxypropylated CyDs and branched CyDs decreased GM1-ganglioside levels in EA1 cells at 1 mm for 24 h. Unexpectedly, there was no significant change in the efflux of cholesterol or phospholipids from the cells after treatment with CyDs under the same experimental conditions, indicating that the efflux of membrane components is not associated with down-regulation of GM1-ganglioside levels in EA1 cells upon CyDs treatment. CONCLUSIONS: CyDs may have the potential as drugs for GM1-gangliosidosis, although the mechanism should be thereafter clarified.


Assuntos
Ciclodextrinas/farmacologia , Fibroblastos/efeitos dos fármacos , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/fisiopatologia , Autofagia/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Fosfolipídeos/metabolismo
20.
J Org Chem ; 79(10): 4398-404, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24735108

RESUMO

We report herein a newly developed domino reaction that facilitates the synthesis of new 1,5-dideoxy-1,5-iminoribitol iminosugar C-glycosides 7a-e and 8. The key intermediate in this approach is a six-membered cyclic sugar nitrone that is generated in situ and trapped by an alkene dipolarophile via a [2 + 3] cycloaddition reaction to give the corresponding isooxazolidines 10a-e in a "one-pot" protocol. The iminoribitol C-glycosides 7a-e and 8 were found to be modest ß-galactosidase (bGal) inhibitors. However, compounds 7c and 7e showed "pharmacological chaperone" activity for mutant lysosomal bGal activity and facilitated its recovery in GM1 gangliosidosis patient fibroblasts by 2-6-fold.


Assuntos
Alcenos/química , Fibroblastos/química , Gangliosidose GM1/tratamento farmacológico , Lisossomos/química , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , Monossacarídeos/síntese química , Óxidos de Nitrogênio/química , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/química , Reação de Cicloadição , Gangliosidose GM1/enzimologia , Gangliosidose GM1/metabolismo , Glicosídeos , Humanos , Lisossomos/metabolismo , Monossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...