Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Hemorheol Microcirc ; 62(1): 27-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25757454

RESUMO

Obstructive sleep apnea syndrome (OSAS) is associated with an elevated risk of cardiovascular events and stroke. Matrix metalloproteinases (MMPs) are endopeptidases involved in extracellular matrix degradation and then in the development and progression of cardiovascular diseases. Our aim was to evaluate plasma levels of gelatinases (MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in a group of subjects with OSAS. We enrolled 48 subjects (36 men and 12 women; mean age 49.7 ± 14.68 yrs) with OSAS diagnosed with a 1-night cardiorespiratory study and then we subdivided these subjects into two subgroups according to the apnea/hypopnea index (AHI): Low (L = 21 subjects with AHI <30) and High (H = 27 subjects with AHI >30). We measured plasma concentration of the gelatinases and their inhibitors using ELISA kits. We observed a significant increase in plasma concentration of MMP-9, MMP-2, TIMP-1 and TIMP-2 in the entire group of OSAS subjects and in the two subgroups, with higher levels in the H in comparison with the L subgroup. In the whole group of OSAS subjects we also noted a significant decrease in MMP-9/TIMP-1 ratio in comparison with normal controls. Only MMP-9 was significantly correlated with the severity of the disease, expressed as AHI, with the oxygen desaturation index and also with the mean oxygen saturation. MMPs pattern is altered in OSAS and significantly influenced by the severity of the disease; it probably contributes to the vascular remodeling that leads to the atherosclerotic disease and cardiovascular complications.


Assuntos
Gelatinases/uso terapêutico , Apneia Obstrutiva do Sono/tratamento farmacológico , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Prostate ; 74(13): 1308-19, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053236

RESUMO

BACKGROUND: As carcinoma progresses, the stroma undergoes a variety of phenotypic changes, including the presence of carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). FAP is a post-prolyl endopeptidase whose expression in a healthy adult is largely restricted to the cancer-associated stroma. FAP-targeted prodrugs with a 100-fold greater therapeutic window over the parent compound were previously generated. METHODS: Prodrugs and non-cleavable controls were incubated in the presence of FAP. Plasma and tumor half-lives (t1/2) of the full-length and active forms of the prodrugs were determined using LCMS. Biodistribution studies of prodrug activation were performed. Histopathological analysis of tissues from treated animals were compared to vehicle-treated controls. Toxicity and efficacy studies were performed in human breast (MDA-MB-231 and MCF-7) and prostate (LNCaP) cancer xenografts models. RESULTS: These FAP-activated prodrugs have a significantly slower clearance from tumor tissue than the circulation (∼12 vs. ∼4.5 hr). Micromolar concentrations of active drug persist in the tumor. Active drug is detected in non-target tissues; however, histopathologic evaluation reveals no evidence of drug-induced toxicity. A FAP-activated prodrug (ERGETGP-S12ADT) inhibits tumor growth in multiple human breast and prostate cancer xenograft models. The anti-tumor effect is comparable to that observed with docetaxel, but results in significantly less toxicity. CONCLUSION: FAP-activated prodrugs are a viable strategy for the management of prostate and other cancers. These prodrugs exhibit less toxicity than a commonly used chemotherapeutic agent. Further refinement of the FAP cleavage site for greater specificity may reduce prodrug activation in non-target tissues and enhance clinical benefit.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacocinética , Gelatinases/farmacocinética , Proteínas de Membrana/farmacocinética , Pró-Fármacos/farmacocinética , Neoplasias da Próstata/tratamento farmacológico , Serina Endopeptidases/farmacocinética , Adenocarcinoma/patologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Endopeptidases , Gelatinases/efeitos adversos , Gelatinases/uso terapêutico , Humanos , Masculino , Proteínas de Membrana/efeitos adversos , Proteínas de Membrana/uso terapêutico , Camundongos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/uso terapêutico , Neoplasias da Próstata/patologia , Serina Endopeptidases/efeitos adversos , Serina Endopeptidases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Neurosci ; 124(10): 707-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24304146

RESUMO

There is a continuous urgent need to explore the pathogenesis and biochemical changes within the infarcted area during acute ischemic stroke (IS). Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest proteins located extracellulary, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, gelatinases (MMP-2 and MMP-9) are the most investigated enzymes. Gelatinases possess the ability to active numerous pro-inflammatory agents as chemokine CXCL-8, interleukin 1ß or tumor necrosis factor α. Moreover, due to digestion of collagen type IV (the component of basal membranes) and tight junction proteins (TJPs) they facilitate to cross the endothelium by leukocytes. Due to the significant role of gelatinases during brain ischemia, their selective inhibition seems to be an interesting kind of treatment of acute stroke. The synthetic inhibitors of gelatineses decrease the infarct volume in animal models of IS. In clinical practice statins, the lipid-lowering drugs possess the ability to inhibit the activity of MMP-9 during acute IS. This review briefly provides the most important information about the involvement of MMP-2 and MMP-9 in the pathogenesis of brain ischemia.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Acidente Vascular Cerebral/enzimologia , Animais , Isquemia Encefálica/complicações , Gelatinases/farmacologia , Gelatinases/uso terapêutico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
4.
J Clin Invest ; 116(7): 1955-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794736

RESUMO

Tumor-associated fibroblasts are key regulators of tumorigenesis. In contrast to tumor cells, which are genetically unstable and mutate frequently, the presence of genetically more stable fibroblasts in the tumor-stromal compartment makes them an optimal target for cancer immunotherapy. These cells are also the primary source of collagen type I, which contributes to decreased chemotherapeutic drug uptake in tumors and plays a significant role in regulating tumor sensitivity to a variety of chemotherapies. To specifically kill tumor-associated fibroblasts, we constructed an oral DNA vaccine targeting fibroblast activation protein (FAP), which is specifically overexpressed by fibroblasts in the tumor stroma. Through CD8+ T cell-mediated killing of tumor-associated fibroblasts, our vaccine successfully suppressed primary tumor cell growth and metastasis of multidrug-resistant murine colon and breast carcinoma. Furthermore, tumor tissue of FAP-vaccinated mice revealed markedly decreased collagen type I expression and up to 70% greater uptake of chemotherapeutic drugs. Most importantly, pFap-vaccinated mice treated with chemotherapy showed a 3-fold prolongation in lifespan and marked suppression of tumor growth, with 50% of the animals completely rejecting a tumor cell challenge. This strategy opens a new venue for the combination of immuno- and chemotherapies.


Assuntos
Vacinas Anticâncer , Fibroblastos/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias , Serina Endopeptidases/metabolismo , Vacinas de DNA , Animais , Linfócitos T CD8-Positivos/imunologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Endopeptidases , Feminino , Gelatinases/genética , Gelatinases/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Serina Endopeptidases/genética , Serina Endopeptidases/uso terapêutico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...