Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Front Immunol ; 14: 1245175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744336

RESUMO

T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell. Here, we performed deep sequencing of the poorly explored pool of partial TRBD1-TRBD2 rearrangements in T-cell genomic DNA. We reconstructed full repertoires of human partial TRBD1-TRBD2 rearrangements using novel sequencing and validated them by detecting V-D-J recombination-specific byproducts: excision circles containing the recombination signal (RS) joint 5'D2-RS - 3'D1-RS. Identified rearrangements were in compliance with the classical 12/23 rule, common for humans, rats, and mice and contained typical V-D-J recombination footprints. Interestingly, we detected a bimodal distribution of D-D junctions indicating two active recombination sites producing long and short D-D rearrangements. Long TRB D-D rearrangements with two D-regions are coding joints D1-D2 remaining classically on the chromosome. The short TRB D-D rearrangements with no D-region are signal joints, the coding joint D1-D2 being excised from the chromosome. They both contribute to the TRB V-(D)-J combinatorial diversity. Indeed, short D-D rearrangements may be followed by direct V-J2 recombination. Long D-D rearrangements may recombine further with J2 and V genes forming partial D1-D2-J2 and then complete V-D1-D2-J2 rearrangement. Productive TRB V-D1-D2-J2 chains are present and expressed in thousands of clones of human antigen-experienced memory T cells proving their capacity for antigen recognition and actual participation in the immune response.


Assuntos
Apoptose , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Recombinação V(D)J , Animais , Humanos , Camundongos , Ratos , Aberrações Cromossômicas , Células Clonais , Células T de Memória
2.
Nature ; 615(7953): 687-696, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356599

RESUMO

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Edição de Genes , Neoplasias , Medicina de Precisão , Receptores de Antígenos de Linfócitos T , Linfócitos T , Transgenes , Humanos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biópsia , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Síndrome da Liberação de Citocina/complicações , Progressão da Doença , Encefalite/complicações , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Mutação , Neoplasias/complicações , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Segurança do Paciente , Medicina de Precisão/efeitos adversos , Medicina de Precisão/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transgenes/genética , Antígenos HLA/imunologia , Sistemas CRISPR-Cas
3.
Front Immunol ; 13: 848113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967453

RESUMO

Cancer driven by somatic mutations may express neoantigens that can trigger T-cell immune responses. Since T-cell receptor (TCR) repertoires play critical roles in anti-tumor immune responses for oncology, next-generation sequencing (NGS) was used to profile the hypervariable complementarity-determining region 3 (CDR3) of the TCR-beta chain in peripheral blood samples from 68 gastric cancer patients and 49 healthy controls. We found that most hyper-expanded CDR3 are individual-specific, and the gene usage of TRBV3-1 is more frequent in the tumor group regardless of tumor stage than in the healthy control group. We identified 374 hyper-expanded tumor-specific CDR3, which may play a vital role in anti-tumor immune responses. The patients with stage IV gastric cancer have higher EBV-specific CDR3 abundance than the control. In conclusion, analysis of the peripheral blood TCR repertoires may provide the biomarker for gastric cancer prognosis and guide future immunotherapy.


Assuntos
Neoplasias Gástricas , Regiões Determinantes de Complementaridade/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Neoplasias Gástricas/genética , Linfócitos T
4.
Front Immunol ; 13: 841519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619722

RESUMO

Introduction: A decentralized and multi-platform-compatible molecular diagnostic tool for kidney transplant biopsies could improve the dissemination and exploitation of this technology, increasing its clinical impact. As a first step towards this molecular diagnostic tool, we developed and validated a classifier using the genes of the Banff-Human Organ Transplant (B-HOT) panel extracted from a historical Molecular Microscope® Diagnostic system microarray dataset. Furthermore, we evaluated the discriminative power of the B-HOT panel in a clinical scenario. Materials and Methods: Gene expression data from 1,181 kidney transplant biopsies were used as training data for three random forest models to predict kidney transplant biopsy Banff categories, including non-rejection (NR), antibody-mediated rejection (ABMR), and T-cell-mediated rejection (TCMR). Performance was evaluated using nested cross-validation. The three models used different sets of input features: the first model (B-HOT Model) was trained on only the genes included in the B-HOT panel, the second model (Feature Selection Model) was based on sequential forward feature selection from all available genes, and the third model (B-HOT+ Model) was based on the combination of the two models, i.e. B-HOT panel genes plus highly predictive genes from the sequential forward feature selection. After performance assessment on cross-validation, the best-performing model was validated on an external independent dataset based on a different microarray version. Results: The best performances were achieved by the B-HOT+ Model, a multilabel random forest model trained on B-HOT panel genes with the addition of the 6 most predictive genes of the Feature Selection Model (ST7, KLRC4-KLRK1, TRBC1, TRBV6-5, TRBV19, and ZFX), with a mean accuracy of 92.1% during cross-validation. On the validation set, the same model achieved Area Under the ROC Curve (AUC) of 0.965 and 0.982 for NR and ABMR respectively. Discussion: This kidney transplant biopsy classifier is one step closer to the development of a decentralized kidney transplant biopsy classifier that is effective on data derived from different gene expression platforms. The B-HOT panel proved to be a reliable highly-predictive panel for kidney transplant rejection classification. Furthermore, we propose to include the aforementioned 6 genes in the B-HOT panel for further optimization of this commercially available panel.


Assuntos
Transplante de Rim , Transplantes , Anticorpos , Biópsia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Humanos , Transplante de Rim/efeitos adversos
5.
J Cutan Pathol ; 49(3): 252-260, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34614220

RESUMO

BACKGROUND: Pityriasis lichenoides (PL) is a papulosquamous disease that affects both adults and children. Previous studies have shown a subset of this entity to have clonal T-cell populations via PCR-based assays. In this study, we sought to implement next-generation sequencing (NGS) as a more sensitive and specific test to examine for T-cell clonality within the pediatric population. METHODS: We identified 18 biopsy specimens from 12 pediatric patients with clinical and histopathologic findings compatible with PL. Patient demographics, clinical features, management, and histopathologic findings were reviewed. All specimens were analyzed for clonality with NGS of T-cell receptor beta (TRB) and gamma (TRG) genes. RESULTS: Of the 12 patients, 9 (75%) had complete resolution of lesions at the time of data collection (mean follow-up 31 months). The remaining three patients significantly improved with methotrexate (with or without acitretin). Interestingly, 7 of 12 patients (58%) and 9 of 17 biopsy specimens (53%) showed evidence of T-cell clonality. Two patients showed matching TRB clones from different anatomic sites. CONCLUSIONS: T-cell clonality is a common finding in PL, probably representing a "reactive clonality" rather than a true lymphoproliferative disorder. Clonality alone cannot be used as a means to distinguish PL from lymphomatoid papulosis or cutaneous lymphoma.


Assuntos
Clonagem Molecular , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T/genética , Pitiríase Liquenoide/genética , Adolescente , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
6.
Front Immunol ; 12: 778996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950143

RESUMO

The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRß-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Seleção Clonal Mediada por Antígeno , Perfilação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Doença Enxerto-Hospedeiro/genética , Tecido Linfoide/imunologia , Linfócitos T/imunologia , Transcriptoma , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ativação Linfocitária , Tecido Linfoide/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Linfócitos T/metabolismo , Fatores de Tempo , Transplante Homólogo , Transplante Isogênico , Irradiação Corporal Total
7.
Front Immunol ; 12: 786402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899754

RESUMO

The complete germline repertoires of the channel catfish, Ictalurus punctatus, T cell receptor (TR) loci, TRAD, TRB, and TRG were obtained by analyzing genomic data from PacBio sequencing. The catfish TRB locus spans 214 kb, and contains 112 TRBV genes, a single TRBD gene, 31 TRBJ genes and two TRBC genes. In contrast, the TRAD locus is very large, at 1,285 kb. It consists of four TRDD genes, one TRDJ gene followed by the exons for TRDC, 125 TRAJ genes and the exons encoding the TRAC. Downstream of the TRAC, are 140 TRADV genes, and all of them are in the opposite transcriptional orientation. The catfish TRGC locus spans 151 kb and consists of four diverse V-J-C cassettes. Altogether, this locus contains 15 TRGV genes and 10 TRGJ genes. To place our data into context, we also analyzed the zebrafish TR germline gene repertoires. Overall, our findings demonstrated that catfish possesses a more restricted repertoire compared to the zebrafish. For example, the 140 TRADV genes in catfish form eight subgroups based on members sharing 75% nucleotide identity. However, the 149 TRAD genes in zebrafish form 53 subgroups. This difference in subgroup numbers between catfish and zebrafish is best explained by expansions of catfish TRADV subgroups, which likely occurred through multiple, relatively recent gene duplications. Similarly, 112 catfish TRBV genes form 30 subgroups, while the 51 zebrafish TRBV genes are placed into 36 subgroups. Notably, several catfish and zebrafish TRB subgroups share ancestor nodes. In addition, the complete catfish TR gene annotation was used to compile a TR gene segment database, which was applied in clonotype analysis of an available gynogenetic channel catfish transcriptome. Combined, the TR annotation and clonotype analysis suggested that the expressed TRA, TRB, and TRD repertoires were generated by different mechanisms. The diversity of the TRB repertoire depends on the number of TRBV subgroups and TRBJ genes, while TRA diversity relies on the many different TRAJ genes, which appear to be only minimally trimmed. In contrast, TRD diversity relies on nucleotide additions and the utilization of up to four TRDD segments.


Assuntos
Proteínas de Peixes/genética , Genes Codificadores dos Receptores de Linfócitos T , Loci Gênicos , Ictaluridae/genética , Receptores de Antígenos de Linfócitos T/genética , Peixe-Zebra/genética , Animais , Evolução Molecular , Proteínas de Peixes/imunologia , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Ictaluridae/imunologia , Filogenia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Especificidade da Espécie , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
8.
Front Immunol ; 12: 697307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489944

RESUMO

The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.


Assuntos
Agamaglobulinemia/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Agamaglobulinemia/genética , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Estudos de Casos e Controles , Regiões Determinantes de Complementaridade/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Imunossenescência/genética , Imunossenescência/imunologia , Masculino , Células T de Memória/imunologia , Pessoa de Meia-Idade , Modelos Imunológicos , Transcriptoma , Adulto Jovem
9.
Br J Haematol ; 194(3): 613-616, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212378

RESUMO

T-ALL is rare in infancy with only 10 (1.5%) of 651 patients of that subtype in the Interfant-06 infant ALL trial. We report 3 cases of t(6;7) (TCR/MYB) infant T-cell Acute Lymphoblastic Leukaemia who appear to have a distinct clinical presentation with CNS disease and refractory disease or late relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Lactente , Translocação Genética
10.
Science ; 372(6548): 1336-1341, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006597

RESUMO

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Epitopos Imunodominantes , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Coronavirus/imunologia , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Antígenos HLA-DP/imunologia , Antígenos HLA-DR/imunologia , Humanos , Memória Imunológica , Proteínas do Nucleocapsídeo/imunologia , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Glicoproteína da Espícula de Coronavírus/química , Células T Auxiliares Foliculares/imunologia , Subpopulações de Linfócitos T/imunologia
11.
Front Immunol ; 12: 669856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986757

RESUMO

Effective tolerogenic intervention in Rheumatoid Arthritis (RA) will rely upon understanding the evolution of articular antigen specific CD4 T cell responses. TCR clonality of endogenous CD4 T cell infiltrates in early inflammatory arthritis was assessed to monitor evolution of the TCR repertoire in the inflamed joint and associated lymph node (LN). Mouse models of antigen-induced breach of self-tolerance and chronic polyarthritis were used to recapitulate early and late phases of RA. The infiltrating endogenous, antigen experienced CD4 T cells in inflamed joints and LNs were analysed using flow cytometry and TCRß sequencing. TCR repertoires from inflamed late phase LNs displayed increased clonality and diversity compared to early phase LNs, while inflamed joints remained similar with time. Repertoires from late phase LNs accumulated clones with a diverse range of TRBV genes, while inflamed joints at both phases contained clones expressing similar TRBV genes. Repertoires from LNs and joints at the late phase displayed reduced CDR3ß sequence overlap compared to the early disease phase, however the most abundant clones in LNs accumulate in the joint at the later phase. The results indicate CD4 T cell repertoire clonality and diversity broadens with progression of inflammatory arthritis and is first reflected in LNs before mirroring in the joint. These observations imply that antigen specific tolerogenic therapies could be more effective if targeted at earlier phases of disease when CD4 T cell clonality is least diverse.


Assuntos
Artrite Experimental/imunologia , Linfócitos T CD4-Positivos/imunologia , Evolução Clonal , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Articulações/imunologia , Linfonodos/imunologia , Tolerância a Antígenos Próprios , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Feminino , Articulações/metabolismo , Linfonodos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Tolerância a Antígenos Próprios/genética , Fatores de Tempo
13.
Front Immunol ; 12: 624230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868241

RESUMO

Cervical cancer is the fourth most common cancer and fourth leading cause of cancer death among women worldwide. In low Human Development Index settings, it ranks second. Screening and surveillance involve the cytology-based Papanicolaou (Pap) test and testing for high-risk human papillomavirus (hrHPV). The Pap test has low sensitivity to detect precursor lesions, while a single hrHPV test cannot distinguish a persistent infection from one that the immune system will naturally clear. Furthermore, among women who are hrHPV-positive and progress to high-grade cervical lesions, testing cannot identify the ~20% who would progress to cancer if not treated. Thus, reliable detection and treatment of cancers and precancers requires routine screening followed by frequent surveillance among those with past abnormal or positive results. The consequence is overtreatment, with its associated risks and complications, in screened populations and an increased risk of cancer in under-screened populations. Methods to improve cervical cancer risk assessment, particularly assays to predict regression of precursor lesions or clearance of hrHPV infection, would benefit both populations. Here we show that women who have lower risk results on follow-up testing relative to index testing have evidence of enhanced T cell clonal expansion in the index cervical cytology sample compared to women who persist with higher risk results from index to follow-up. We further show that a machine learning classifier based on the index sample T cells predicts this transition to lower risk with 95% accuracy (19/20) by leave-one-out cross-validation. Using T cell receptor deep sequencing and machine learning, we identified a biophysicochemical motif in the complementarity-determining region 3 of T cell receptor ß chains whose presence predicts this transition. While these results must still be tested on an independent cohort in a prospective study, they suggest that this approach could improve cervical cancer screening by helping distinguish women likely to spontaneously regress from those at elevated risk of progression to cancer. The advancement of such a strategy could reduce surveillance frequency and overtreatment in screened populations and improve the delivery of screening to under-screened populations.


Assuntos
Alphapapillomavirus/imunologia , Detecção Precoce de Câncer , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Teste de Papanicolaou , Infecções por Papillomavirus/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Linfócitos T/imunologia , Neoplasias do Colo do Útero/diagnóstico , Esfregaço Vaginal , Adulto , Alphapapillomavirus/genética , Alphapapillomavirus/patogenicidade , Regiões Determinantes de Complementaridade/genética , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Testes de DNA para Papilomavírus Humano , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/virologia , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Linfócitos T/virologia , Transcriptoma , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
14.
Front Immunol ; 12: 639672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927715

RESUMO

Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3ß, and paired CDR3α:CDR3ß motif candidates. Among these, a previously known conserved CDR3ß R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3ß motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRß sequences of which 145, 102 and 78 belonged to TCRα, TCRß and paired TCRαß sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.


Assuntos
Motivos de Aminoácidos/genética , Linfócitos T CD4-Positivos/metabolismo , Glutens/genética , Receptores de Antígenos de Linfócitos T/genética , Doença Celíaca/genética , Regiões Determinantes de Complementaridade/genética , Epitopos de Linfócito T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Antígenos HLA-DQ/genética , Humanos , Epitopos Imunodominantes/genética , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
15.
Immunogenetics ; 73(2): 163-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475766

RESUMO

Restoration of T cell repertoire diversity after allogeneic bone marrow transplantation (allo-BMT) is crucial for immune recovery. T cell diversity is produced by rearrangements of germline gene segments (V (D) and J) of the T cell receptor (TCR) α and ß chains, and selection induced by binding of TCRs to MHC-peptide complexes. Multiple measures were proposed for this diversity. We here focus on the V-gene usage and the CDR3 sequences of the beta chain. We compared multiple T cell repertoires to follow T cell repertoire changes post-allo-BMT in HLA-matched related donor and recipient pairs. Our analyses of the differences between donor and recipient complementarity determining region 3 (CDR3) beta composition and V-gene profile show that the CDR3 sequence composition does not change during restoration, implying its dependence on the HLA typing. In contrast, V-gene usage followed a time-dependent pattern, initially following the donor profile and then shifting back to the recipients' profile. The final long-term repertoire was more similar to that of the recipient's original one than the donor's; some recipients converged within months, while others took multiple years. Based on the results of our analyses, we propose that donor-recipient V-gene distribution differences may serve as clinical biomarkers for monitoring immune recovery.


Assuntos
Transplante de Medula Óssea , Regiões Determinantes de Complementaridade/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Linfócitos T/imunologia , Adulto , Feminino , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Teste de Histocompatibilidade , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Doadores de Tecidos , Transplante Homólogo
16.
Immunology ; 162(4): 464-475, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345304

RESUMO

Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-ß sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-ß sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-ß sequences.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timo/imunologia , Animais , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Uso do Códon , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Recombinação Genética
17.
Ann N Y Acad Sci ; 1487(1): 43-55, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33107070

RESUMO

Whether T cells promote bone loss following immobilization after spinal cord injury (SCI) remains undetermined. Therefore, wild-type (WT) and T cell-deficient (Tcrb-/- ) male mice underwent sham or contusion SCI to cause hindlimb paralysis. Femurs were isolated and distal and midshaft regions were evaluated by microcomputed tomography scanning. Bone marrow (BM) levels of bone turnover markers, as well as receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG), were measured by ELISA. At 2 weeks post-SCI, immobilization resulted in marked reduction in trabecular fractional bone volume (55%), thickness (40%), connectivity, and cortical thickness only in the Tcrb-/- animals (interaction with P < 0.05). BM analysis revealed lower bone formation (procollagen type 1 intact N-terminal propeptide), higher bone resorption (tartrate-resistant acid phosphatase-5b), and a higher RANKL/OPG ratio in the Tcrb-/- SCI animals. At 5 weeks post-SCI, while both WT and Tcrb-/- paralyzed animals showed deterioration of all indices of bone structure, they were more severe in Tcrb-/- animals. In summary, unlike other skeletal disorders, loss of αß T cells compromises, rather than preserves, skeletal integrity under conditions of immobilization.


Assuntos
Reabsorção Óssea/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Traumatismos da Medula Espinal/complicações , Linfócitos T/patologia , Animais , Densidade Óssea/genética , Densidade Óssea/imunologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Contagem de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microtomografia por Raio-X
18.
J Immunol Methods ; 488: 112931, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221458

RESUMO

Adoptive cell therapy with genetically modified regulatory T cells (Tregs) is under clinical investigation for the treatment of transplant rejection and various autoimmune conditions. A limitation of modelling this approach in mice is the lack of optimized protocols for expanding and transducing mouse Tregs. Here we describe a protocol for purifying, expanding and retrovirally transducing mouse Tregs with a vector encoding a chimeric antigen receptor as a model transgene. We found that isolation of Tregs from C57Bl/6J Foxp3EGFP mice solely based on eGFP expression resulted in sufficiently pure cells; co-sorting of CD25hi cells was not essential. Although expansion with rapamycin reduced Treg expansion, it promoted maximal in vitro suppressive activity. Retroviral transduction of Tregs following 2 days of stimulation with anti-CD3/CD28 beads achieved a transduction efficiency of ~40% and did not impair their suppressive capacity. When injected into a conventional T cell (Tconv)-transfer-induced colitis model, transduced Tregs inhibited colitis progression at ratios as low as 1 Treg to 100 Tconvs, and maintained Foxp3 and transgene expression throughout an 8-week period. This method facilitates the study of transduced Tregs in animal models and will enable the study of genetically engineered Treg therapy for a variety of inflammatory diseases.


Assuntos
Proliferação de Células , Vetores Genéticos , Receptores de Antígenos Quiméricos/metabolismo , Retroviridae/genética , Linfócitos T Reguladores/metabolismo , Transdução Genética , Transferência Adotiva , Animais , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/metabolismo , Colite/prevenção & controle , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Separação Imunomagnética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Retroviridae/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
19.
Front Immunol ; 11: 573413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133088

RESUMO

Enrichment for tyrosine in immunoglobulin CDR-H3 is due in large part to natural selection of germline immunoglobulin DH sequence. We have previously shown that when DH sequence is modified to reduce the contribution of tyrosine codons, epitope recognition is altered and B cell development, antibody production, autoantibody production, and morbidity and mortality following pathogen challenge are adversely affected. TCRß diversity (Dß) gene segment sequences are even more highly conserved than DH, with trout Dß1 identical to human and mouse Dß1. We hypothesized that natural selection of Dß sequence also shapes CDR-B3 diversity and influences T cell development and T cell function. To test this, we used a mouse strain that lacked Dß2 and contained a novel Dß1 allele (DßYTL) that replaces Dß1 with an immunoglobulin DH, DSP2.3. Unlike Dß1, wherein glycine predominates in all three reading frames (RFs), in DSP2.3 there is enrichment for tyrosine in RF1, threonine in RF2, and leucine in RF3. Mature T cells using DßYTL expressed TCRs enriched at particular CDR-B3 positions for tyrosine but depleted of leucine. Changing Dß sequence altered thymocyte and peripheral T cell numbers and the T cell response to an ovalbumin immunodominant epitope. The differences in tyrosine content might explain, at least in part, why TCRs are more polyspecific and of lower affinity for their cognate antigens than their immunoglobulin counterparts.


Assuntos
Regiões Determinantes de Complementaridade , Genes de Cadeia Pesada de Imunoglobulina , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Cadeias Pesadas de Imunoglobulinas/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Timócitos/metabolismo , Animais , Imunização , Epitopos Imunodominantes , Cadeias Pesadas de Imunoglobulinas/genética , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Timócitos/imunologia , Tirosina
20.
Immunology ; 161(4): 354-363, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32875554

RESUMO

T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR ß-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR ß-chain (TCR-ß) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dß-Jß and Vß-Dß combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/imunologia , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Recombinação V(D)J
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...