Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.680
Filtrar
1.
Nat Commun ; 15(1): 4450, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789411

RESUMO

Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.


Assuntos
Fatores de Transcrição E2F , Histona Desacetilases , Proteínas Repressoras , Proteína do Retinoblastoma , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Células HCT116 , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética , Camundongos , Animais , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Ciclo Celular/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Genes cdc
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612920

RESUMO

X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.


Assuntos
Epilepsia , Espasmos Infantis , Feminino , Humanos , Genes Ligados ao Cromossomo X , Epigênese Genética , Genes cdc , Epilepsia/genética , Receptor de Pró-Renina , Protocaderinas , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca de Nucleotídeo Guanina Rho , N-Acetilglucosaminiltransferases
3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612390

RESUMO

Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.


Assuntos
Larix , Larix/genética , Câmbio , Genes cdc , Divisão Celular , Mudança Climática
4.
Front Immunol ; 15: 1335112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476236

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the absence of effective treatments to halt its progression, novel molecular approaches to the NAFLD diagnosis and treatment are of paramount importance. Methods: Firstly, we downloaded oxidative stress-related genes from the GeneCards database and retrieved NAFLD-related datasets from the GEO database. Using the Limma R package and WGCNA, we identified differentially expressed genes closely associated with NAFLD. In our study, we identified 31 intersection genes by analyzing the intersection among oxidative stress-related genes, NAFLD-related genes, and genes closely associated with NAFLD as identified through Weighted Gene Co-expression Network Analysis (WGCNA). In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we identified three hub genes using three machine learning algorithms: Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest. Subsequently, a nomogram was utilized to predict the incidence of NAFLD. The CIBERSORT algorithm was employed for immune infiltration analysis, single sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment analysis, and Protein-Protein Interaction (PPI) networks to explore the relationships between the three hub genes and other intersecting genes of NAFLD and OS. The distribution of these three hub genes across six cell clusters was determined using single-cell RNA sequencing. Finally, utilizing relevant data from the Attie Lab Diabetes Database, and liver tissues from NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further validated the significant roles of CDKN1B and TFAM in NAFLD. Results: In the course of this research, we identified 31 genes with a strong association with oxidative stress in NAFLD. Subsequent machine learning analysis and external validation pinpointed two genes: CDKN1B and TFAM, as demonstrating the closest correlation to oxidative stress in NAFLD. Conclusion: This investigation found two hub genes that hold potential as novel targets for the diagnosis and treatment of NAFLD, thereby offering innovative perspectives for its clinical management.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Genes cdc , Perfilação da Expressão Gênica , Biomarcadores
5.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377146

RESUMO

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Assuntos
Neoplasias da Mama , Cromatina , Dedos , Doenças do Cabelo , Síndrome de Langer-Giedion , Nariz , Feminino , Humanos , Neoplasias da Mama/genética , Cromatina/genética , Receptor alfa de Estrogênio/genética , Dedos/anormalidades , Fatores de Transcrição GATA , Expressão Gênica , Genes cdc , Nariz/anormalidades , Proteínas Repressoras/genética
6.
Exp Gerontol ; 187: 112373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320732

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD) patients are likely to develop sarcopenia, while the exact mechanism underlying the association between sarcopenia and COPD is still not clear. This cohort study aims to explore the genes, signaling pathways, and transcription factors (TFs) that are related to the molecular pathogenesis of sarcopenia and COPD. METHODS: According to the strict inclusion criteria, two gene sets (GSE8479 for sarcopenia and GSE76925 for COPD) were obtained from the Gene Expression Omnibus (GEO) platform. Overlapping differentially expressed genes (DEGs) in sarcopenia and COPD were detected, and comprehensive bioinformatics analysis was conducted, including functional annotation, enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), construction of a protein-protein interaction (PPI) network, co-expression analysis, identification and validation of hub genes, and TFs prediction and verification. RESULTS: In total, 118 downregulated and 92 upregulated common DEGs were detected. Functional analysis revealed that potential pathogenesis involves oxidoreductase activity and ferroptosis. Thirty hub genes were detected, and ATP metabolic process and oxidative phosphorylation were identified to be closely related to the hub genes. Validation analysis revealed that SAA1, C3, and ACSS2 were significantly upregulated, whereas ATF4, PPARGC1A, and MCTS1 were markedly downregulated in both sarcopenia and COPD. In addition, six TFs (NFKB1, RELA, IRF7, SP1, MYC, and JUN) were identified to regulate the expression of these genes, and SAA1 was found to be coregulated by NFKB1 and RELA. CONCLUSION: This study uncovers potential common mechanisms of COPD complicated by sarcopenia. The hub gene SAA1 and the NF-κB signaling pathway could be involved, and oxidative phosphorylation and ferroptosis might be important contributors to this comorbidity.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Humanos , Sarcopenia/genética , Estudos de Coortes , Genes cdc , Doença Pulmonar Obstrutiva Crônica/genética , Fosforilação Oxidativa , Biologia Computacional
7.
Aging (Albany NY) ; 16(3): 2494-2516, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305770

RESUMO

Immune checkpoint inhibitors (ICIs) represent a promising therapeutic approach for esophageal squamous cell carcinoma (ESCC). However, the subpopulations of ESCC patients expected to benefit from ICIs have not been clearly defined. The anti-tumor cytotoxic activity of T cells is an important pharmacological mechanism of ICIs. In this study, the prognostic value of the genes regulating tumor cells to T cell-mediated killing (referred to as GRTTKs) in ESCC was explored by using a comprehensive bioinformatics approach. Training and validation datasets were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. A prognostic risk scoring model was developed by integrating prognostic GRTTKs from TCGA and GEO datasets using a ridge regression algorithm. Patients with ESCC were divided into high- and low-risk groups based on eight GRTTKs (EIF4H, CDK2, TCEA1, SPTLC2, TMEM209, RGP1, EIF3D, and CAPZA3) to predict overall survival in the TCGA cohort. Using Kaplan-Meier curves, receiver operating characteristic curves, and C-index analysis, the high reliability of the prognostic risk-scoring model was certified. The model scores served as independent prognostic factors, and combining clinical staging with risk scoring improved the predictive value. Patients in the high-risk group exhibited abundant immune cell infiltration, including immune checkpoint expression, antigen presentation capability, immune cycle gene expression, and high tumor inflammation signature scores. The high-risk group exhibited a greater response to immunotherapy and neoadjuvant chemotherapy than the low-risk group. Drug sensitivity analysis demonstrated lower IC50 for AZD6244 and PD.0332991 in high-risk groups and lower IC50 for cisplatin, ATRA, QS11, and vinorelbine in the low-risk group. Furthermore, the differential expression of GRTTK-related signatures including CDK2, TCEA1, and TMEM209 were verified in ESCC tissues and paracancerous tissues. Overall, the novel GRTTK-based prognostic model can serve as indicators to predict the survival status and immunotherapy response of patients with ESCC, thereby providing guidance for the development of personalized treatment strategies.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Reprodutibilidade dos Testes , Linfócitos T , Genes cdc , Prognóstico , Fator de Iniciação 3 em Eucariotos
8.
Genes (Basel) ; 15(1)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254989

RESUMO

The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the heterogeneity of the TME and its role in disease progression. In this study, we inferred malignant cells at the invasion front by analyzing single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data of ER-positive (ER+) breast cancer patients. In addition, we developed a software pipeline for constructing intercellular gene regulatory networks (IGRNs), which help to reduce errors generated by single-cell communication analysis and increase the confidence of selected cell communication signals. Based on the constructed IGRN between malignant cells at the invasive front of the TME and the immune cells of ER+ breast cancer patients, we found that a high expression of the transcription factors FOXA1 and EZH2 played a key role in driving tumor progression. Meanwhile, elevated levels of their downstream target genes (ESR1 and CDKN1A) were associated with poor prognosis of breast cancer patients. This study demonstrates a bioinformatics workflow of combining scRNA-seq and ST data; in addition, the study provides the software pipelines for constructing IGRNs automatically (cIGRN). This strategy will help decipher cancer progression by revealing bidirectional signaling between invasive frontline malignant tumor cells and immune cells, and the selected signaling molecules in the regulatory network may serve as biomarkers for mechanism studies or therapeutic targets.


Assuntos
Neoplasias da Mama , Ecossistema , Humanos , Feminino , Perfilação da Expressão Gênica , Transcriptoma/genética , Neoplasias da Mama/genética , Genes cdc , Microambiente Tumoral/genética
9.
BMC Cancer ; 24(1): 129, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267901

RESUMO

BACKGROUND: Esophageal cancer (EC) is a deadly disease with limited therapeutic options. Although circulating tumor DNA (ctDNA) could be a promising tool in this regard, the availiable evidence is limited. We performed a systematic review and meta-analysis to summarize the clinical applicability of the next-generation sequencing (NGS) and droplet digital polymerase chain reaction (ddPCR) technology on the ctDNA detection of the EC and listed the current challenges. METHODS: We systematically searched MEDLINE (via PubMed), Embase (via OVID), ISI Web of Science database and Cochrane Library from January, 2000 to April, 2023. Progression-free survival (PFS) and overall survival (OS) were set as primary outcome endpoints. Pathologic response was evaluated by tumor regression grade (TRG), according to the eighth edition of the American Joint Committee on Cancer (AJCC). Major pathologic regression (MPR) was defined as TRG 1 and 2. The MPR was set as secondary endpoint. Hazard rate (HR) and associated 95% CI were used as the effect indicators the association between ctDNA and prognosis of EC. MPR rates were also calculated. Fixed-effect model (Inverse Variance) or random-effect model (Mantel-Haenszel method) was performed depending on the statistically heterogeneity. RESULTS: Twenty-two studies, containing 1144 patients with EC, were included in this meta-analysis. The results showed that OS (HR = 3.87; 95% CI, 2.86-5.23) and PFS (HR = 4.28; 95% CI, 3.34-5.48) were shorter in ctDNA-positive patients. In the neoadjuvant therapy, the sensitivity analysis showed the clarified HR of ctDNA-positive was 1.13(95% CI, 1.01-1.28). We also found that TP53, NOTCH1, CCND1 and CNKN2A are the most frequent mutation genes. CONCLUSIONS: Positive ctDNA is associated with poor prognosis, which demonstrated clinical value of ctDNA. Longitudinal ctDNA monitoring showed potential prognostic value in the neoadjuvant therapy. In an era of precision medicine, ctDNA could be a promising tool to individualize treatment planning and to improve outcomes in EC. PROSPERO REGISTRATION NUMBER: CRD42023412465.


Assuntos
DNA Tumoral Circulante , Neoplasias Esofágicas , Humanos , DNA Tumoral Circulante/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Bases de Dados Factuais , Biblioteca Gênica , Genes cdc
10.
Nat Cancer ; 5(2): 330-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200245

RESUMO

Mutations in human cells exhibit increased burden in heterochromatic, late DNA replication time (RT) chromosomal domains, with variation in mutation rates between tissues mirroring variation in heterochromatin and RT. We observed that regional mutation risk further varies between individual tumors in a manner independent of cell type, identifying three signatures of domain-scale mutagenesis in >4,000 tumor genomes. The major signature reflects remodeling of heterochromatin and of the RT program domains seen across tumors, tissues and cultured cells, and is robustly linked with higher expression of cell proliferation genes. Regional mutagenesis is associated with loss of activity of the tumor-suppressor genes RB1 and TP53, consistent with their roles in cell cycle control, with distinct mutational patterns generated by the two genes. Loss of regional heterogeneity in mutagenesis is associated with deficiencies in various DNA repair pathways. These mutation risk redistribution processes modify the mutation supply towards important genes, diverting the course of somatic evolution.


Assuntos
Genes cdc , Neoplasias , Humanos , Heterocromatina , Mutação/genética , Neoplasias/genética , Mutagênese/genética
11.
Mol Biol Rep ; 51(1): 166, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252343

RESUMO

BACKGROUND: Genomic imprinting refers to expressing parent-specific genes in mammalian diploid cells. The NDN gene is maternally imprinted in humans and mice and correlates with the timing of puberty. This study aimed to investigate its imprinting status and its relationship with the onset of puberty in Dolang sheep. METHODS AND RESULTS: In this study, cloning and sequencing obtained the NDN gene cDNA sequence of 1082 bp of Dolang sheep, coding for 325 amino acids. Similarity analysis and phylogenetic tree showed that the NDN gene conformed to the law of speciation and was highly conserved among mammals. RT-qPCR results showed the highest expression of NDN mRNA was found in the hypothalamus at puberty, and the expression was significantly increased and then significantly decreased from prepuberty to postpuberty in the hypothalamus, pituitary, and ovary and oviduct. Based on expressed single nucleotide polymorphism (SNP), the NDN gene was expressed monoallelically in the tissues of adult and neonatal umbilical cords, and the expressed allele was paternally inherited. The NDN promoter region of 3400 bp was obtained by cloning and identified in monoallelic-expressing tissues (hypothalamus, ovary, spleen) as a differentially methylated region (DMR). CONCLUSION: These findings will enrich the number of imprinted genes in sheep and suggest that the NDN gene could be a candidate gene for studying puberty initiation in Dolang sheep.


Assuntos
Aminoácidos , Genes cdc , Animais , Feminino , Alelos , Clonagem Molecular , Filogenia , Ovinos/genética
12.
Aging (Albany NY) ; 16(2): 1879-1896, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261737

RESUMO

BACKGROUND: Cyclin-Dependent Kinase 16 (CDK16) plays significant biological roles in various diseases. Nonetheless, its function in different cancer types and its relationship with the Tumor Immune Microenvironment (TIME) are still not well-understood. METHODS: We analyzed the expression profile, genetic alterations, clinical features, and prognostic value of CDK16 in pan-cancer using data from The Cancer Genome Atlas, Genotype-Tissue Expression databases, and in vitro experiments. Additionally, the TIMER2 and ImmuCellAI databases were utilized to assess the correlation between CDK16 expression and immune cell infiltration levels. Finally, we examined the correlation between CDK16 and the response to immunotherapy using collected immunotherapy data. RESULTS: CDK16 is notably overexpressed in pan-cancer and is a risk factor for poor prognosis in various cancers. Our findings reveal that CDK16 regulates not only cell cycle-related functions to promote cell proliferation but also the autoimmunity-related functions of the innate and adaptive immune systems, along with other immune-related signaling pathways. Moreover, CDK16 overexpression contributes to an immunosuppressive tumor microenvironment, extensively suppressing immune-related features such as the expression of immune-related genes and pathways, as well as the count of immune-infiltrating cells. Our analysis indicated that individuals with low CDK16 expression showed higher response rates to immune checkpoint inhibitors and longer overall survival compared to those with high CDK16 expression. CONCLUSIONS: This study establishes CDK16 as a potential biomarker for predicting poor prognosis in a wide range of cancers. Its role in shaping the immunosuppressive tumor microenvironment and influencing the efficacy of immunotherapy highlights the urgent need for developing targeted therapies against CDK16, offering new avenues for cancer treatment and management.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Prognóstico , Microambiente Tumoral/genética , Genes cdc , Quinases Ciclina-Dependentes , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
13.
Environ Toxicol ; 39(2): 657-668, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37565774

RESUMO

INTRODUCTION: Prostate cancer is a common cancer among male population. The aberrant expression of histone modifiers has been identified as a potential driving force in numerous cancer types. However, the mechanism of histone modifiers in the development of prostate cancer remains unknown. METHODS: Expression profiles and clinical data were obtained from GSE70769, GSE46602, and GSE67980. Seruat R package was utilized to calculate the gene set enrichment of the histone modification pathway and obtain the Histone score. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were employed to identify marker genes with prognostic value. Kaplan-Meier survival analysis was conducted to assess the efficacy of the prognostic model. In addition, microenvironment cell populations counter (MCPcounter), single-sample gene set enrichment analysis (ssGSEA), and xCell algorithms were employed for immune infiltration analysis. Drug sensitivity prediction was performed using oncoPredict R package. RESULTS: We screened differentially expressed genes (DEGs) between Histone-high score (Histone-H) and Histone-low score (Histone-L) groups, which were enriched in RNA splicing and DNA-binding transcription factor binding pathways. We retained four prognostic marker genes, including TACC3, YWHAH, TAF1C and TTLL5. The risk model showed significant efficacy in stratification of the prognosis of prostate cancer patients in both internal and external cohorts (p < .0001 and p = .032, respectively). In addition, prognostic gene YWHAH was infiltrated in abundance of fibroblasts and highly correlated with Entinostat_1593 drug sensitivity score and the value of risk score. CONCLUSION: We innovatively developed a histone modification-related prognostic model with high prognostic potency and identified YWHAH as possible diagnostic and therapeutic biomarkers for prostate cancer. It provides novel insights to address prostate cancer and enhance clinical outcomes, thereby opening up a new avenue for customized treatment alternatives.


Assuntos
Histonas , Neoplasias da Próstata , Humanos , Masculino , Histonas/genética , Prognóstico , RNA-Seq , Neoplasias da Próstata/genética , Genes cdc , Microambiente Tumoral/genética , Proteínas Associadas aos Microtúbulos
14.
Adv Biol (Weinh) ; 8(3): e2300227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087887

RESUMO

Primary cultured cells cannot proliferate infinite. The overcoming of this limit can be classified as immortalization. Bypass of p16 senescence protein induces efficient immortalization various types of mammalians is previously reported. However, the Cetacea species is not known. Here, that common minke whale-derived cells can be immortalized with a combination of human genes, mutant cyclin-dependent kinase 4 (CDK4R24C ), cyclin D1, and Telomerase Reverse Transcriptase (TERT) is reported. These results indicate that the function of cell cycle regulators in premature senescence is evolutionarily conserved. This study describes the conserved roles of cell cycle regulators in the immortalization of cells from humans to Cetacea species. Furthermore, using RNA-seq based on next-generation sequencing, the gene expression profiles of immortalized cells are compared with parental cells as well as those immortalized with SV40 large T antigen, which is once a popular method for cellular immortalization. The profiling results show that newly established common minke-whale-derived immortaliozed cells have completely different profiles from SV40 cells. This result indicates that the expression of mutant CDK4, cyclin D1, and TERT enables to establish immortalized cell lines with different biological nature from SV40 expressing cells.


Assuntos
Ciclina D1 , Baleia Anã , Animais , Humanos , Ciclina D1/genética , Linhagem Celular , Genes cdc , Ciclo Celular/genética
15.
Environ Toxicol ; 39(2): 695-707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647361

RESUMO

Angiogenesis contributes to tumor progression, aggressive behavior, and metastasis. Although several endothelial dysfunction genes (angiogenesis-related genes [ARGs]) have been identified as diagnostic biomarkers of breast cancer in a few studies, the mixed effects of ARGs have not been thoroughly investigated. The RNA sequencing data and patient survival datasets of breast cancer were obtained for further analysis. MSigDB website includes angiogenesis-related mechanisms. The consensus clustering analysis identifies 1082 breast cancer patients as three clusters. differential expression genes (DEGs) were identified by limma package. GO combined with gene set enrichment analysis (GSEA) to identify cytogenetic functions between two predefined clusters. Then Serpin Family F Member 1 (SERPINF1), angiomotin (AMOT), promyelocytic leukemia (PML), and BTG anti-proliferation factor 1 (BTG) were selected to construct prediction models using random forest survival analysis. External validation was performed using the GSE58812 triple-negative breast cancer cohort as the validation set. The median scoring system was used to discern the high- and low-risk groups, and there was a significant difference in their diagnostic results. Immunological infiltration scores were calculated using single sample gene set enrichment analysis (ssGSEA) and xCell algorithms, and consciousness scores were calculated using the R package "oncoPredict" for drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) database. In addition, the single-cell analysis of seven triple-negative breast cancers using scRNA-seq information from GSE118389 demonstrated the interpretation of SERPINF1, AMOT, PML, and BTG1. In conclusion, this investigation engineered ARG-centric disease paradigms that not only prognosticated prospective therapeutic compounds, but also projected their mechanistic trajectories, thereby facilitating the proposition of tailored treatments within diverse patient cohorts diagnosed with breast cancer.


Assuntos
Medicina de Precisão , Neoplasias de Mama Triplo Negativas , Humanos , Angiogênese , Genes cdc , Neoplasias de Mama Triplo Negativas/genética
16.
Front Immunol ; 14: 1263988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090564

RESUMO

Background: Autophagy plays a critical role in the progression of osteoarthritis (OA), mainly by regulating inflammatory and immune responses. However, the underlying mechanisms remain unclear. This study aimed to investigate the potential relevance of autophagy-related genes (ARGs) associated with infiltrating immune cells in OA. Methods: GSE114007, GSE169077, and ARGs were obtained from the Gene Expression Omnibus (GEO) database and the Human Autophagy database. R software was used to identify the differentially expressed autophagy-related genes (DEARGs) in OA. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the role of DEARGs in OA cartilage, and then Cytoscape was utilized to screen hub ARGs. Single-sample gene set enrichment analysis (ssGSEA) was used to conduct immune infiltration analysis and evaluate the potential correlation of key ARGs and immune cell infiltration. Then, the expression levels of hub ARGs in OA were further verified by the GSE169077 and qRT-PCR. Finally, Western blotting and immunohistochemistry were used to validate the final hub ARGs. Results: A total of 24 downregulated genes and five upregulated genes were identified, and these genes were enriched in autophagy, mitophagy, and inflammation-related pathways. The intersection results identified nine hub genes, namely, CDKN1A, DDIT3, FOS, VEGFA, RELA, MAP1LC3B, MYC, HSPA5, and HSPA8. GSE169077 and qRT-PCR validation results showed that only four genes, CDKN1A, DDT3, MAP1LC3B, and MYC, were consistent with the bioinformatics analysis results. Western blotting and immunohistochemical (IHC) showed that the expression of these four genes was significantly downregulated in the OA group, which is consistent with the qPCR results. Immune infiltration correlation analysis indicated that DDIT3 was negatively correlated with immature dendritic cells in OA, and FOS was positively correlated with eosinophils. Conclusion: CDKN1A, DDIT3, MAP1LC3B, and MYC were identified as ARGs that were closely associated with immune infiltration in OA cartilage. Among them, DDIT3 showed a strong negative correlation with immature dendritic cells. This study found that the interaction between ARGs and immune cell infiltration may play a crucial role in the pathogenesis of OA; however, the specific interaction mechanism needs further research to be clarified. This study provides new insights to further understand the molecular mechanisms of immunity involved in the process of OA by autophagy.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Genes Reguladores , Genes cdc , Osteoartrite/genética , Autofagia/genética
17.
BMC Cancer ; 23(1): 1185, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049741

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a major health concern, necessitating a deeper understanding of its prognosis and underlying mechanisms. This study aimed to investigate the mechanism and prognostic value of CD8+ T Cell exhaustion (CD8+ TEX)-related genes in HCC and construct a survival prognosis prediction model for patients with HCC. METHODS: CD8+ TEX-related genes associated with HCC prognosis were analysed and identified, and a prognostic prediction model was constructed using the 'least absolute shrinkage and selection operator' Cox regression model. Immunohistochemistry was used to verify the expression of the model genes in HCC tissues. A nomogram was constructed based on risk scores and clinical features, and its predictive efficacy was verified. The expression of STAM, ANXA5, and MAD2L2 in HCC cell lines was detected by western blotting; subsequently, these genes were knocked down in HCC cell lines by small interfering RNA, and their effects on the proliferation and migration of HCC cell lines were detected by colony formation assay, cck8, wound healing, and transwell assays. RESULTS: Six genes related to CD8+ TEX were included in the risk-prediction model. The prognosis of patients with HCC in the low-risk group was significantly better than that of those in the high-risk group. Cox regression analysis revealed that the risk score was an independent risk factor for the prognosis of patients with HCC. The differentially expressed genes in patients with high-risk HCC were mainly enriched in the nucleotide-binding oligomerization domain-containing protein-like receptor, hypoxia-inducible factor-1, and tumour programmed cell death protein (PD)-1/PD-L1 immune checkpoint pathways. The CD8+ TEX-related genes STAM, ANXA5, and MAD2L2 were knocked down in HCC cell lines to significantly inhibit cell proliferation and migration. The prediction results of the nomogram based on the risk score showed a good fit and application value. CONCLUSION: The prediction model based on CD8+ TEX-related genes can predict the prognosis of HCC and provide a theoretical basis for the early identification of patients with poor HCC prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Exaustão das Células T , Neoplasias Hepáticas/genética , Genes cdc , Anexina A5 , Linfócitos T CD8-Positivos , Prognóstico , Proteínas Mad2
18.
Front Immunol ; 14: 1245514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111587

RESUMO

Objective: This study amied to investigate the prognostic characteristics of triple negative breast cancer (TNBC) patients by analyzing B cell marker genes based on single-cell and bulk RNA sequencing. Methods: Utilizing single-cell sequencing data from TNBC patients, we examined tumor-associated B cell marker genes. Transcriptomic data from The Cancer Genome Atlas (TCGA) database were used as the foundation for predictive modeling. Independent validation set was conducted using the GSE58812 dataset. Immune cell infiltration into the tumor was assessed through various, including XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA. The TIDE score was utilized to predict immunotherapy outcomes. Additional investigations were conducted on the immune checkpoint blockade gene, tumor mutational load, and the GSEA enrichment analysis. Results: Our analysis encompassed 22,106 cells and 20,556 genes in cancerous tissue samples from four TNBC patients, resulting in the identification of 116 B cell marker genes. A B cell marker gene score (BCMG score) involving nine B cell marker genes (ZBP1, SEL1L3, CCND2, TNFRSF13C, HSPA6, PLPP5, CXCR4, GZMB, and CCDC50) was developed using TCGA transcriptomic data, revealing statistically significant differences in survival analysis (P<0.05). Functional analysis demonstrated that marker genes were predominantly associated with immune-related pathways. Notably, substantial differences between the higher and lower- BCMG score groups were observed in terms of immune cell infiltration, immune cell activity, tumor mutational burden, TIDE score, and the expression of immune checkpoint blockade genes. Conclusion: This study has established a robust model based on B-cell marker genes in TNBC, which holds significant potential for predicting prognosis and response to immunotherapy in TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Inibidores de Checkpoint Imunológico , Genes Reguladores , Genes cdc , Análise de Sequência de RNA
19.
Front Immunol ; 14: 1326018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143770

RESUMO

Background: Ovarian cancer (OC) is a highly heterogeneous and malignant gynecological cancer, thereby leading to poor clinical outcomes. The study aims to identify and characterize clinically relevant subtypes in OC and develop a diagnostic model that can precisely stratify OC patients, providing more diagnostic clues for OC patients to access focused therapeutic and preventative strategies. Methods: Gene expression datasets of OC were retrieved from TCGA and GEO databases. To evaluate immune cell infiltration, the ESTIMATE algorithm was applied. A univariate Cox analysis and the two-sided log-rank test were used to screen OC risk factors. We adopted the ConsensusClusterPlus algorithm to determine OC subtypes. Enrichment analysis based on KEGG and GO was performed to determine enriched pathways of signature genes for each subtype. The machine learning algorithm, support vector machine (SVM) was used to select the feature gene and develop a diagnostic model. A ROC curve was depicted to evaluate the model performance. Results: A total of 1,273 survival-related genes (SRGs) were firstly determined and used to clarify OC samples into different subtypes based on their different molecular pattern. SRGs were successfully stratified in OC patients into three robust subtypes, designated S-I (Immunoreactive and DNA Damage repair), S-II (Mixed), and S-III (Proliferative and Invasive). S-I had more favorable OS and DFS, whereas S-III had the worst prognosis and was enriched with OC patients at advanced stages. Meanwhile, comprehensive functional analysis highlighted differences in biological pathways: genes associated with immune function and DNA damage repair including CXCL9, CXCL10, CXCL11, APEX, APEX2, and RBX1 were enriched in S-I; S-II combined multiple gene signatures including genes associated with metabolism and transcription; and the gene signature of S-III was extensively involved in pathways reflecting malignancies, including many core kinases and transcription factors involved in cancer such as CDK6, ERBB2, JAK1, DAPK1, FOXO1, and RXRA. The SVM model showed superior diagnostic performance with AUC values of 0.922 and 0.901, respectively. Furthermore, a new dataset of the independent cohort could be automatically analyzed by this innovative pipeline and yield similar results. Conclusion: This study exploited an innovative approach to construct previously unexplored robust subtypes significantly related to different clinical and molecular features for OC and a diagnostic model using SVM to aid in clinical diagnosis and treatment. This investigation also illustrated the importance of targeting innate immune suppression together with DNA damage in OC, offering novel insights for further experimental exploration and clinical trial.


Assuntos
Genes cdc , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Algoritmos
20.
Cell Cycle ; 22(21-22): 2392-2408, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38124367

RESUMO

Homologous repair deficiency (HRD) impedes double-strand break repair, which is a common driver of carcinogenesis. Positive HRD status can be used as theranostic markers of response to platinum- and PARP inhibitor-based chemotherapies. Here, we aimed to fully investigate the therapeutic and prognostic potential of HRD in pancreatic adenocarcinoma (PAAD) and identify effective biomarkers related to HRD using comprehensive bioinformatics analysis. The HRD score was defined as the unweighted sum of the LOH, TAI, and LST scores, and it was obtained based on the previous literature. To characterize PAAD immune infiltration subtypes, the "ConsensusClusterPlus" package in R was used to conduct unsupervised clustering. A WGCNA was conducted to elucidate the gene coexpression modules and hub genes in the HRD-related gene module of PAAD. The functional enrichment study was performed using Metascape. LASSO analysis was performed using the "glmnet" package in R, while the random forest algorithm was realized using the "randomForest" package in R. The prognostic variables were evaluated using univariate Cox analysis. The prognostic risk model was built using the LASSO approach. ROC curve and KM survival analyses were performed to assess the prognostic potential of the risk model. The half-maximal inhibitory concentration (IC50) of the PARP inhibitors was estimated using the "pRRophetic" package in R and the Genomics of Drug Sensitivity in Cancer database. The "rms" package in R was used to create the nomogram. A high HRD score indicated a poor prognosis and an advanced clinical process in PAAD patients. PAAD tumors with high HRD levels revealed significant T helper lymphocyte depletion, upregulated levels of cancer stem cells, and increased sensitivity to rucaparib, Olaparib, and veliparib. Using WGCNA, 11 coexpression modules were obtained. The red module and 122 hub genes were identified as the most correlated with HRD in PAAD. Functional enrichment analysis revealed that the 122 hub genes were mainly concentrated in cell cycle pathways. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were screened via LASSO analysis and a random forest algorithm, and they were validated using independent validation sets. No direct association between HRD and CKS1B, HJURP, or TPX2 has not been reported in the literature so far. Thus, these findings indicated that CKS1B, HJURP, and TPX2 have potential as diagnostic and prognostic biomarkers for PAAD. We constructed a novel HRD-related prognostic model that provides new insights into PAAD prognosis and immunotherapy. Based on bioinformatics analysis, we comprehensively explored the therapeutic and prognostic potential of HRD in PAAD. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were identified through the combination of WGCNA, LASSO analysis and a random forest algorithm. A novel HRD-related risk model that can predict clinical prognosis and immunotherapeutic response in PAAD patients was constructed.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Genes cdc , Aprendizado de Máquina , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...