Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.097
Filtrar
1.
BMC Genomics ; 25(1): 441, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702600

RESUMO

BACKGROUND: Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS: In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS: Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.


Assuntos
Bactérias , Proteínas de Bactérias , Evolução Molecular , Filogenia , Percepção de Quorum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Transativadores/genética , Transativadores/metabolismo , Transativadores/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704577

RESUMO

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Enterococcus faecalis , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Linezolida , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Linezolida/farmacologia , China/epidemiologia , Humanos , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Antibacterianos/farmacologia , Estudos Retrospectivos , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Proteínas de Bactérias/genética , Genoma Bacteriano , Epidemiologia Molecular , Centros de Atenção Terciária , Genômica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38722758

RESUMO

Strain TC023T, a Gram-positive, long, rod-shaped, spore-forming anaerobe, was isolated from the faeces of a heart failure mouse model. The strain formed greyish-white coloured colonies with a convex elevation on brain-heart infusion medium supplemented with 0.1 % sodium taurocholate, incubated at 37 °C for 2 days. Taxonomic analysis based on the 16S rRNA gene sequence showed that TC023T belonged to the genus Turicibacter, and was closely related to Turicibacter bilis MMM721T (97.6 %) and Turicibacter sanguinis MOL361T (97.4 %). The whole genome of the strain has a G+C content of 37.3 mol%. The average nucleotide identity and genome-to-genome distance between TC023T and Turicibacter bilis MMM721T were 77.6 % and 24.3 %, respectively, and those with Turicibacter sanguinis MOL361T were 75.4 % and 24.3 %, respectively. These genotypic, phenotypic, and biochemical analyses indicated that the isolate represents a novel species in the genus Turicibacter, and the name Turicibacter faecis sp. nov. is proposed. The type strain is TC023T (RIMD 2002001T=TSD 372T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Modelos Animais de Doenças , Fezes , Insuficiência Cardíaca , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Camundongos , DNA Bacteriano/genética , Insuficiência Cardíaca/microbiologia , Genoma Bacteriano , Masculino , Ácidos Graxos
4.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723602

RESUMO

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Assuntos
Prófagos , Vibrio cholerae , Vibrio cholerae/genética , Prófagos/genética , Prófagos/fisiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Genoma Bacteriano , Bacteriófagos/genética , Bacteriófagos/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
5.
Front Cell Infect Microbiol ; 14: 1377993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711928

RESUMO

Introduction: Detailed assessment of the population structure of group B Streptococcus (GBS) among adults is still lacking in Saudi Arabia. Here we characterized a representative collection of isolates from colonized and infected adults. Methods: GBS isolates (n=89) were sequenced by Illumina and screened for virulence and antimicrobial resistance determinants. Genetic diversity was assessed by single nucleotide polymorphisms and core-genome MLST analyses. Results: Genome sequences revealed 28 sequence types (STs) and nine distinct serotypes, including uncommon serotypes VII and VIII. Majority of these STs (n=76) belonged to the human-associated clonal complexes (CCs) CC1 (33.71%), CC19 (25.84%), CC17 (11.24%), CC10/CC12 (7.87%), and CC452 (6.74%). Major CCs exhibited intra-lineage serotype diversity, except for the hypervirulent CC17, which exclusively expressed serotype III. Virulence profiling revealed that nearly all isolates (94.38%) carried at least one of the four alpha family protein genes (i.e., alphaC, alp1, alp2/3, and rib), and 92.13% expressed one of the two serine-rich repeat surface proteins Srr1 or Srr2. In addition, most isolates harbored the pilus island (PI)-2a alone (15.73%) or in combination with PI-1 (62.92%), and those carrying PI-2b alone (10.11%) belonged to CC17. Phylogenetic analysis grouped the sequenced isolates according to CCs and further subdivided them along with their serotypes. Overall, isolates across all CC1 phylogenetic clusters expressed Srr1 and carried the PI-1 and PI-2a loci, but differed in genes encoding the alpha-like proteins. CC19 clusters were dominated by the III/rib/srr1/PI-1+PI-2a (43.48%, 10/23) and V/alp1/srr1/PI-1+PI-2a (34.78%, 8/23) lineages, whereas most CC17 isolates (90%, 9/10) had the same III/rib/srr2/P1-2b genetic background. Interestingly, genes encoding the CC17-specific adhesins HvgA and Srr2 were detected in phylogenetically distant isolates belonging to ST1212, suggesting that other highly virulent strains might be circulating within the species. Resistance to macrolides and/or lincosamides across all major CCs (n=48) was associated with the acquisition of erm(B) (62.5%, 30/48), erm(A) (27.1%, 13/48), lsa(C) (8.3%, 4/48), and mef(A) (2.1%, 1/48) genes, whereas resistance to tetracycline was mainly mediated by presence of tet(M) (64.18%, 43/67) and tet(O) (20.9%, 14/67) alone or in combination (13.43%, 9/67). Discussion: These findings underscore the necessity for more rigorous characterization of GBS isolates causing infections.


Assuntos
Farmacorresistência Bacteriana , Variação Genética , Genoma Bacteriano , Tipagem de Sequências Multilocus , Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Fatores de Virulência , Humanos , Arábia Saudita , Streptococcus agalactiae/genética , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/classificação , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/isolamento & purificação , Infecções Estreptocócicas/microbiologia , Virulência/genética , Farmacorresistência Bacteriana/genética , Fatores de Virulência/genética , Polimorfismo de Nucleotídeo Único , Antibacterianos/farmacologia , Adulto , Filogenia , Sequenciamento Completo do Genoma , Genômica , Genótipo , Testes de Sensibilidade Microbiana , Feminino
6.
Glob Health Epidemiol Genom ; 2024: 8872463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716477

RESUMO

This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, ß-lactam/ß-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Tailândia/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/tratamento farmacológico , Humanos , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Carbapenêmicos/farmacologia , Virulência/genética
7.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717815

RESUMO

Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9 %), 1/36 RT056 strains (2.78 %) and none of 77 RT002 strains. Notably, ~90 % of strains were resistant to MLSB agents in vitro, but only ~5.9 % harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63 % (12/19) comprised isolates from the same Australian State and 37 % (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Filogenia , Ribotipagem , Clostridioides difficile/genética , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Austrália/epidemiologia , Humanos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/transmissão , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Genótipo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38717929

RESUMO

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Peixes , Flavobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Animais , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Peixes/microbiologia , Genoma Bacteriano , Aquicultura , Fosfatidiletanolaminas
9.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717668

RESUMO

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Assuntos
Sedimentos Geológicos , Família Multigênica , Filogenia , Microbiologia do Solo , Regiões Antárticas , Sedimentos Geológicos/microbiologia , Metabolismo Secundário/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/classificação , Genoma Bacteriano , Biotecnologia/métodos , Vias Biossintéticas/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
10.
Sci Rep ; 14(1): 10109, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698002

RESUMO

Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.


Assuntos
Genoma Bacteriano , Filogenia , Humanos , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Evolução Molecular , Genômica/métodos , Bacteroidetes/genética
11.
PLoS One ; 19(5): e0299588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718091

RESUMO

Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.


Assuntos
Corynebacterium glutamicum , Variação Genética , Genoma Bacteriano , Filogenia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Família Multigênica , Genômica/métodos
12.
Sci Rep ; 14(1): 12260, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806511

RESUMO

Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.


Assuntos
Proteínas de Bactérias , Genoma Bacteriano , Ilhas Genômicas , Salmonella enterica , Ilhas Genômicas/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Salmonella enterica/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Domínios Proteicos
13.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806731

RESUMO

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Bacteriano , Salmonella enterica , Brasil , Salmonella enterica/genética , Salmonella enterica/classificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Humanos , Filogenia , Tipagem de Sequências Multilocus , Animais , Sistemas CRISPR-Cas/genética , Sorogrupo
14.
Curr Microbiol ; 81(7): 191, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797770

RESUMO

A new isolate designated as 1XM1-14T was isolated from a tidal flat sediment of Xiamen Island. The yellow-pigmented colonies and rod-shaped cells were observed. Strain 1XM1-14T could hydrolyze Tweens 20, 40, 60, aesculin, and skim milk, and was chemoheterotrophic and mesophilic, required NaCl for the growth. The 16S rRNA gene-based phylogenetic analysis indicated that strain 1XM1-14T was the most closely related to Altererythrobacter epoxidivorans CGMCC 1.7731T (97.0%), followed by other type strain of the genus Altererythrobacter with identities below 97.0%. The DNA-DNA hybridization and average nucleotide identity values between strain 1XM1-14T and its relatives of the genus Altererythrobacter were below the respective thresholds for prokaryotic species demarcation. The phylogenomic inference further revealed that strain 1XM1-14T formed a separate branch distinct from the type strains of the recognized species within the genus Altererythrobacter. The major cellular fatty acids of strain 1XM1-14T were identified as summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), C17:1 ω6c, and C16:0; the profile of polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, an unidentified glycolipid, and two unidentified lipids; the respiratory quinone was determined to ubiquinone-10. The genomic size and DNA G+C content of strain 1XM1-14T were 2.5 Mbp and 62.71%. The key carotenoid biosynthetic genes were determined in the genome of strain 1XM1-14T and the generated carotenoids were detected. The combined genotypic and phenotypic characteristics supported the classification of strain 1XM1-14T (= GDMCC 1.2383T = KCTC 82612T) as a novel species in the genus Altererythrobacter, for which the name Altererythrobacter litoralis sp. nov. is proposed.


Assuntos
Composição de Bases , Carotenoides , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Carotenoides/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Genoma Bacteriano , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Fosfolipídeos/análise
15.
Discov Med ; 36(184): 1030-1040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798262

RESUMO

BACKGROUND: Since 2019, the incidence of anthrax in the Ningxia Hui Autonomous Region has increased significantly compared with previous years, so in this situation the anthrax in the Ningxia region not only had a detrimental impact on public health, but also inflicted significant economic repercussions. Therefore, we conducted a molecular epidemiological study of 20 strains from 2019-2023 isolates. This study investigated the origin of Bacillus anthracis and its genetic diversity. METHODS: We conducted canonical single-nucleotide polymorphisms (CanSNPs) typing and whole genome sequencing based on the extracted nucleic acid of Bacillus anthracis. Based on the whole genome drafts, we studied the genomic characteristics of 20 isolates. Meanwhile, we performed phylogenetic studies based on genome-wide core single-nucleotide polymorphisms (SNPs) using MEGA's Maximum Likelihood (ML) method and core-genome-based multilocus sequence typing (cgMLST) of the core genomes of these strains using BioNumerics' minimum spanning tree (MST) model. RESULTS: The 20 isolates were categorized into sub-lineages A.Br.001/002, and comparative genomic analyses of these strains with other isolates from other parts of the world showed that the strains from Ningxia were correlated with isolates from Europe, Indonesia, Georgia (USA), and Beijing (China). For the 20 isolates in Ningxia, the genetic relationship of the isolates isolated from the same year or region was relatively close. CONCLUSION: The A.Br.001/002 subgroup was the dominant endemic strain in Ningxia. The genetic relationship and phylogenesis between isolates from Ningxia and strains from Europe and Indonesia suggest that anthrax spread around the globe through ancient trade routes.


Assuntos
Antraz , Bacillus anthracis , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Bacillus anthracis/genética , Bacillus anthracis/isolamento & purificação , Sequenciamento Completo do Genoma/métodos , China/epidemiologia , Antraz/microbiologia , Antraz/epidemiologia , Genoma Bacteriano/genética , Humanos , Tipagem de Sequências Multilocus/métodos
16.
Virulence ; 15(1): 2359467, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38808732

RESUMO

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Infecções por Pasteurella , Pasteurella multocida , Filogenia , Pasteurella multocida/genética , Pasteurella multocida/classificação , Animais , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/transmissão , Elementos de DNA Transponíveis , Conjugação Genética , Evolução Molecular , Aves Domésticas/microbiologia , Prevalência , Sequenciamento de Nucleotídeos em Larga Escala
17.
Antonie Van Leeuwenhoek ; 117(1): 84, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809302

RESUMO

Pseudoalteromonas piscicida 2515, isolated from Litopenaeus vannamei culture water, is a potential marine probiotic with broad anti-Vibrio properties. However, genomic information on P. piscicida 2515 is scarce. In this study, the general genomic characteristics and probiotic properties of the P. piscicida 2515 strain were analysed. In addition, we determined the antibacterial mechanism of this bacterial strain by scanning electron microscopy (SEM). The results indicated that the whole-genome sequence of P. piscicida 2515 contained one chromosome and one plasmid, including a total length of 5,541,406 bp with a G + C content of 43.24%, and 4679 protein-coding genes were predicted. Various adhesion-related genes, amino acid and vitamin metabolism and biosynthesis genes, and stress-responsive genes were found with genome mining tools. The presence of genes encoding chitin, bromocyclic peptides, lantibiotics, and sactipeptides showed the strong antibacterial activity of the P. piscicida 2515 strain. Moreover, in coculture with Vibrio anguillarum, P. piscicida 2515 displayed vesicle/pilus-like structures located on its surface that possibly participated in its bactericidal activity, representing an antibacterial mechanism. Additionally, 16 haemolytic genes and 3 antibiotic resistance genes, including tetracycline, fluoroquinolone, and carbapenem were annotated, but virulence genes encoding enterotoxin FM (entFM), cereulide (ces), and cytotoxin K were not detected. Further tests should be conducted to confirm the safety characteristics of P. piscicida 2515, including long-term toxicology tests, ecotoxicological assessment, and antibiotic resistance transfer risk assessment. Our results here revealed a new understanding of the probiotic properties and antibacterial mechanism of P. piscicida 2515, in addition to theoretical information for its application in aquaculture.


Assuntos
Genoma Bacteriano , Probióticos , Pseudoalteromonas , Vibrio , Sequenciamento Completo do Genoma , Pseudoalteromonas/genética , Vibrio/genética , Vibrio/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Penaeidae/microbiologia , Filogenia , Composição de Bases
18.
BMC Biol ; 22(1): 125, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807090

RESUMO

BACKGROUND: Bacterial epigenetics is a rapidly expanding research field. DNA methylation by diverse bacterial methyltransferases (MTases) contributes to genomic integrity and replication, and many recent studies extended MTase function also to global transcript regulation and phenotypic variation. Helicobacter pylori is currently one of those bacterial species which possess the highest number and the most variably expressed set of DNA MTases. Next-generation sequencing technologies can directly detect DNA base methylation. However, they still have limitations in their quantitative and qualitative performance, in particular for cytosine methylation. RESULTS: As a complementing approach, we used enzymatic methyl sequencing (EM-Seq), a technology recently established that has not yet been fully evaluated for bacteria. Thereby, we assessed quantitatively, at single-base resolution, whole genome cytosine methylation for all methylated cytosine motifs in two different H. pylori strains and isogenic MTase mutants. EM-Seq reliably detected both m5C and m4C methylation. We demonstrated that three different active cytosine MTases in H. pylori provide considerably different levels of average genome-wide single-base methylation, in contrast to isogenic mutants which completely lost specific motif methylation. We found that strain identity and changed environmental conditions, such as growth phase and interference with methyl donor homeostasis, significantly influenced quantitative global and local genome-wide methylation in H. pylori at specific motifs. We also identified significantly hyper- or hypo-methylated cytosines, partially linked to overlapping MTase target motifs. Notably, we revealed differentially methylated cytosines in genome-wide coding regions under conditions of methionine depletion, which can be linked to transcript regulation. CONCLUSIONS: This study offers new knowledge on H. pylori global and local genome-wide methylation and establishes EM-Seq for quantitative single-site resolution analyses of bacterial cytosine methylation.


Assuntos
Metilação de DNA , Genoma Bacteriano , Helicobacter pylori , Helicobacter pylori/genética , Genoma Bacteriano/genética , Homeostase , Citosina/metabolismo , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Front Immunol ; 15: 1392456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779673

RESUMO

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Assuntos
Proteínas de Bactérias , Animais , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus suis/imunologia , Streptococcus suis/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Humanos , Vacinas Bacterianas/imunologia
20.
PeerJ ; 12: e17306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784399

RESUMO

Background: Salmonella enterica serovar Infantis (Salmonella Infantis) is a zoonotic, ubiquitous and foodborne pathogen of worldwide distribution. Despite Brazil's relevance as a major meat exporter, few studies were conducted to characterize strains of this serovar by genomic analyses in this country. Therefore, this study aimed to assess the diversity of 80 Salmonella Infantis strains isolated from veterinary, food and human sources in Brazil between 2013 and 2018 by comparative genomic analyses. Additional genomes of non-Brazilian countries (n = 18) were included for comparison purposes in some analyses. Methods: Analyses of whole-genome multi-locus sequence typing (wgMLST), using PGAdb-builder, and of fragmented genomes, using Gegenees, were conducted to compare the 80 Brazilian strains to the 18 non-Brazilian genomes. Pangenome analyses and calculations were performed for all Salmonella Infantis genomes analyzed. The presence of prophages was determined using PHASTER for the 80 Brazilian strains. The genome plasticity using BLAST Ring Image Generator (BRIG) and gene synteny using Mauve were evaluated for 20 selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Unique orthologous protein clusters were searched in ten selected Salmonella Infantis genomes from Brazil and ten from non-Brazilian countries. Results: wgMLST and Gegenees showed a high genomic similarity among some Brazilian Salmonella Infantis genomes, and also the correlation of some clusters with non-Brazilian genomes. Gegenees also showed an overall similarity >91% among all Salmonella Infantis genomes. Pangenome calculations revealed an open pangenome for all Salmonella Infantis subsets analyzed and a high gene content in the core genomes. Fifteen types of prophages were detected among 97.5% of the Brazilian strains. BRIG and Mauve demonstrated a high structural similarity among the Brazilian and non-Brazilian isolates. Unique orthologous protein clusters related to biological processes, molecular functions, and cellular components were detected among Brazilian and non-Brazilian genomes. Conclusion: The results presented using different genomic approaches emphasized the significant genomic similarity among Brazilian Salmonella Infantis genomes analyzed, suggesting wide distribution of closely related genotypes among diverse sources in Brazil. The data generated contributed to novel information regarding the genomic diversity of Brazilian and non-Brazilian Salmonella Infantis in comparison. The different genetically related subtypes of Salmonella Infantis from Brazil can either occur exclusively within the country, or also in other countries, suggesting that some exportation of the Brazilian genotypes may have already occurred.


Assuntos
Genoma Bacteriano , Genômica , Tipagem de Sequências Multilocus , Salmonella enterica , Brasil , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Genoma Bacteriano/genética , Humanos , Animais , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Sorogrupo , Microbiologia de Alimentos , Filogenia , Salmonelose Animal/microbiologia , Salmonelose Animal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...