Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mutat Res ; 823: 111758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34333390

RESUMO

Exposure to the ultraviolet (UV) radiation in sunlight creates DNA lesions, which if left unrepaired can induce mutations and contribute to skin cancer. The two most common UV-induced DNA lesions are the cis-syn cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), both of which can initiate mutations. Interestingly, mutation frequency across the genomes of many cancers is heterogenous with significant increases in heterochromatin. Corresponding increases in UV lesion susceptibility and decreases in repair are observed in heterochromatin versus euchromatin. However, the individual contributions of CPDs and 6-4PPs to mutagenesis have not been systematically examined in specific genomic and epigenomic contexts. In this study, we compared genome-wide maps of 6-4PP and CPD lesion abundances in primary cells and conducted comprehensive analyses to determine the genetic and epigenetic features associated with susceptibility. Overall, we found a high degree of similarity between 6-4PP and CPD formation, with an enrichment of both in heterochromatin regions. However, when examining the relative levels of the two UV lesions, we found that bivalent and Polycomb-repressed chromatin states were uniquely more susceptible to 6-4PPs. Interestingly, when comparing UV susceptibility and repair with melanoma mutation frequency in these regions, disparate patterns were observed in that susceptibility was not always inversely associated with repair and mutation frequency. Functional enrichment analysis hint at mechanisms of negative selection for these regions that are essential for cell viability, immune function and induce cell death when mutated. Ultimately, these results reveal both the similarities and differences between UV-induced lesions that contribute to melanoma.


Assuntos
Reparo do DNA , Epigênese Genética/efeitos da radiação , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA , Bases de Dados Genéticas , Eucromatina/química , Eucromatina/metabolismo , Eucromatina/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Genoma Humano/efeitos da radiação , Heterocromatina/química , Heterocromatina/metabolismo , Heterocromatina/efeitos da radiação , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma/etiologia , Melanoma/metabolismo , Melanoma/patologia , Mutagênese , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cultura Primária de Células , Dímeros de Pirimidina/agonistas , Dímeros de Pirimidina/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
2.
J Biol Chem ; 296: 100581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771559

RESUMO

The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Genoma Humano/genética , Genoma Humano/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Humanos , Dímeros de Pirimidina/metabolismo
3.
PLoS Genet ; 17(1): e1009302, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444353

RESUMO

Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes. In this work, we sequenced genomes of single cell-derived clonal lineages obtained from primary skin cells of a large cohort of healthy individuals across a wide range of ages. We report here the range of mutation load and a comprehensive view of the various somatic genome changes that accumulate in skin cells. We demonstrate that UV-induced base substitutions, insertions and deletions are prominent even in sun-shielded skin. In addition, we detect accumulation of mutations due to spontaneous deamination of methylated cytosines as well as insertions and deletions characteristic of DNA replication errors in these cells. The endogenously induced somatic mutations and indels also demonstrate a linear increase with age, while UV-induced mutation load is age-independent. Finally, we show that DNA replication stalling at common fragile sites are potent sources of gross chromosomal rearrangements in human cells. Thus, somatic mutations in skin of healthy individuals reflect the interplay of environmental and endogenous factors in facilitating genome instability and carcinogenesis.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação de DNA/genética , Replicação do DNA/genética , Pele/efeitos da radiação , Metilação de DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Genoma Humano/genética , Genoma Humano/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Genômica/métodos , Humanos , Mutação INDEL/efeitos da radiação , Melanócitos/efeitos da radiação , Mutagênese/genética , Mutagênese/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
4.
Nat Commun ; 11(1): 6178, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268790

RESUMO

The three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular/efeitos da radiação , Reparo do DNA , DNA/genética , Genoma Humano/efeitos da radiação , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Ciclo Celular/genética , Linhagem Celular , DNA/metabolismo , Dano ao DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfócitos/efeitos da radiação , Especificidade de Órgãos , Raios X
5.
Health Phys ; 119(1): 109-117, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483046

RESUMO

Little is known about the mutational impact of ionizing radiation (IR) exposure on a genome-wide level in mammalian tissues. Recent advancements in sequencing technology have provided powerful tools to perform exome-wide analyses of genetic variation. This also opened up new avenues for studying and characterizing global genomic IR-induced effects. However, genotypes generated by next generation sequencing (NGS) studies can contain errors, which may significantly impact the power to detect signals in common and rare variant analyses. These genotyping errors are not explicitly detected by the standard Genotype Analysis ToolKit (GATK) and Variant Quality Score Recalibration (VQSR) tool and thus remain a potential source of false-positive variants in whole exome sequencing (WES) datasets. In this context, the transition-transversion ratio (Ti/Tv) is commonly used as an additional quality check. In case of IR experiments, this is problematic when Ti/Tv itself might be influenced by IR treatment. It was the aim of this study to determine a suitable threshold for variant filters for NGS datasets from irradiated cells in order to achieve high data quality using Ti/Tv, while at the same time being able to investigate radiation-specific effects on the Ti/Tv ratio for different radiation doses. By testing a variety of filter settings and comparing the obtained results with publicly available datasets, we observe that a coverage filter setting of depth (DP) 3 and genotype quality (GQ) 20 is sufficient for high quality single nucleotide variants (SNVs) calling in an analysis combining GATK and VSQR and that Ti/Tv values are a consistent and useful indicator for data quality assessment for all tested NGS platforms. Furthermore, we report a reduction in Ti/Tv in IR-induced mutations in primary human gingiva fibroblasts (HGFs), which points to an elevated proportion of transversions among IR-induced SNVs and thus might imply that mismatch repair (MMR) plays a role in the cellular damage response to IR-induced DNA lesions.


Assuntos
Exoma/efeitos da radiação , Fibroblastos/efeitos da radiação , Variação Genética/efeitos da radiação , Genoma Humano/efeitos da radiação , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Interpretação Estatística de Dados , Bases de Dados Genéticas , Exoma/genética , Fibroblastos/citologia , Genótipo , Gengiva/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Análise de Sequência de DNA , Sequenciamento do Exoma
6.
Cell Biochem Funct ; 38(3): 283-289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943290

RESUMO

Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.


Assuntos
Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Motivos de Aminoácidos , Dano ao DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Glicosilação/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Neoplasias/radioterapia , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitinação/efeitos da radiação
7.
Cancer Lett ; 472: 108-118, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837443

RESUMO

Despite the common application and considerable efforts to achieve precision radiotherapy (RT) in several types of cancer, RT has not yet entered the era of precision medicine; the ability to predict radiosensitivity and treatment responses in tumors and normal tissues is lacking. Therefore, development of genome-based methods for individual prognosis in radiation oncology is urgently required. Traditional DNA sequencing requires tissue samples collected during invasive operations; therefore, repeated tests are nearly impossible. Intra- and inter-tumoral heterogeneity may undermine the predictive power of a single assay from tumor samples. In contrast, analysis of circulating tumor DNA (ctDNA) allows for non-invasive and near real-time sampling of tumors. By investigating the genetic composition of tumors and monitoring dynamic changes during treatment, ctDNA analysis may potentially be clinically valuable in prediction of treatment responses prior to RT, surveillance of responses during RT, and evaluation of residual disease following RT. As a biomarker for RT response, ctDNA profiling may guide personalized treatments. In this review, we will discuss approaches of tissue DNA sequencing and ctDNA detection and summarize their clinical applications in both traditional RT and in combination with immunotherapy.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Genômica , Neoplasias/radioterapia , Biomarcadores Tumorais/efeitos da radiação , Proliferação de Células/efeitos da radiação , DNA Tumoral Circulante/efeitos da radiação , Testes Diagnósticos de Rotina , Intervalo Livre de Doença , Feminino , Genoma Humano/efeitos da radiação , Humanos , Masculino , Neoplasia Residual/sangue , Neoplasia Residual/patologia , Neoplasia Residual/radioterapia , Neoplasias/sangue , Neoplasias/patologia , Medicina de Precisão , Prognóstico , Resultado do Tratamento
8.
Genes (Basel) ; 11(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861886

RESUMO

Ionising radiation (IR) is known to induce a wide variety of lesions in DNA. In this review, we compared three different techniques that examined the DNA sequence preference of IR-induced DNA damage at nucleotide resolution. These three techniques were: the linear amplification/polymerase stop assay, the end-labelling procedure, and Illumina next-generation genome-wide sequencing. The DNA sequence preference of IR-induced DNA damage was compared in purified DNA sequences including human genomic DNA. It was found that the DNA sequence preference of IR-induced DNA damage identified by the end-labelling procedure (that mainly detected single-strand breaks) and Illumina next-generation genome-wide sequencing (that mainly detected double-strand breaks) was at C nucleotides, while the linear amplification/polymerase stop assay (that mainly detected base damage) was at G nucleotides. A consensus sequence at the IR-induced DNA damage was found to be 5'-AGGC*C for the end-labelling technique, 5'-GGC*MH (where * is the cleavage site, M is A or C, H is any nucleotide except G) for the genome-wide technique, and 5'-GG* for the linear amplification/polymerase stop procedure. These three different approaches are important because they provide a deeper insight into the mechanism of action of IR-induced DNA damage.


Assuntos
Dano ao DNA , Genoma Humano/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Radiação Ionizante , Análise de Sequência de DNA
9.
Proc Natl Acad Sci U S A ; 116(48): 24196-24205, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31723047

RESUMO

If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.


Assuntos
Fibroblastos/efeitos da radiação , Genoma Humano/efeitos da radiação , Melanócitos/efeitos da radiação , Nucleotídeos de Pirimidina/efeitos da radiação , Regiões 5' não Traduzidas , Células Cultivadas , Dano ao DNA/efeitos da radiação , Fibroblastos/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanócitos/fisiologia , Melanoma/genética , Mutação , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Dímeros de Pirimidina/efeitos da radiação , Neoplasias Cutâneas/genética , Serina-Treonina Quinases TOR/genética , Raios Ultravioleta
10.
J Cell Physiol ; 234(11): 19464-19470, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31058319

RESUMO

Radiation exposure can evoke cellular stress responses. Emerging recognition that long non-coding RNAs (lncRNAs) act as regulators of gene expression has broadened the spectra of molecules controlling the genomic landscape upon alterations in environmental conditions. Knowledge of the mechanisms responding to low dose irradiation (LDR) exposure is very limited yet most likely involve subtle ancillary molecular pathways other than those protecting the cell from direct cellular damage. The discovery that transcription of the lncRNA PARTICLE (promoter of MAT2A- antisense radiation-induced circulating lncRNA; PARTICL) becomes dramatically instigated within a day after LDR exposure introduced a new gene regulator onto the biological landscape. PARTICLE affords an RNA binding platform for genomic silencers such as DNA methyltransferase 1 and histone tri-methyltransferases to reign in the expression of tumor suppressors such as its neighboring MAT2A in cis as well as WWOX in trans. In silico evidence offers scope to speculate that PARTICLE exploits the abundance of Hoogsten bonds that exist throughout mammalian genomes for triplex formation, presumably a vital feature within this RNA silencer. PARTICLE may provide a buffering riboswitch platform for S-adenosylmethionine. The correlation of PARTICLE triplex formation sites within tumor suppressor genes and their abundance throughout the genome at cancer-related hotspots offers an insight into potential avenues worth exploring in future therapeutic endeavors.


Assuntos
Neoplasias/genética , Interferência de RNA/efeitos da radiação , RNA Longo não Codificante/genética , Exposição à Radiação/efeitos adversos , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Genoma Humano/efeitos da radiação , Genômica , Histona Metiltransferases/genética , Humanos , Metionina Adenosiltransferase/genética , Neoplasias/radioterapia , Regiões Promotoras Genéticas/genética , Doses de Radiação , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética
11.
Epigenetics ; 14(1): 81-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30691379

RESUMO

DNA hydroxymethylation has gained attention as an intermediate in the process of DNA demethylation. More recently, 5-hydroxymethylcytosine has been recognized as an independent epigenetic mark that can persist over time and that exerts influence on gene regulation and other biological processes. Deregulation of this DNA modification has been linked to tumorigenesis and a variety of other diseases. The impact of irradiation on DNA hydroxymethylation is poorly understood. In this study we exposed lung fibroblasts (IMR90) to 0.5 Gy and 2 Gy of X-rays, respectively. We characterized radiation induced changes of DNA hydroxymethylation 1 h, 6 h, 24 h and 120 h after exposure employing immunoprecipitation and subsequent deep sequencing of the genomic fraction enriched for hydroxymethylated DNA. Transcriptomic response to irradiation was analyzed for time points 6 h and 24 h post exposure by means of RNA sequencing. Irradiated and sham-irradiated samples shared the same overall distribution of 5-hydroxymethylcytosines with respect to genomic features such as promoters and exons. The frequency of 5-hydroxymethylcytosine peaks differentially detected in irradiated samples increased in genic regions over time, while the opposing trend was observed for intergenic regions. Onset and extent of this effect was dose dependent. Moreover, we demonstrated a biased distribution of 5-hmC alterations at CpG islands and sites occupied by the DNA binding protein CTCF. In summary, our study provides new insights into the epigenetic response to irradiation. Our data highlight genomic features more prone to irradiation induced changes of DNA hydroxymethylation, which might impact early and late onset effects of irradiation.


Assuntos
Metilação de DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , Células Cultivadas , Ilhas de CpG , DNA Intergênico/química , DNA Intergênico/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Raios X
12.
Eur J Med Genet ; 62(11): 103546, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30342098

RESUMO

Ehlers-Danlos syndrome (EDS) is a heritable connective tissue disorder characterized by skin hyperextensibility, abnormal wound healing, and joint hypermobility with prevalence 1:20 000. Its incidence is probably underestimated due to unknown number of subjects having mild symptoms who may have never been diagnosed through entire life time. Classical EDS is characterized by pathogenic variants of genes encoding type V collagen. The biological effects and health risks of patients with EDS exposure to low doses of ionizing radiation is poorly understood. The aim of this study was to investigate biological effect of low doses of ionizing radiation in children with EDS. Background values of chromosome aberrations in children suffering from classical EDS were determined and compared with control subjects. The in vitro experiment was performed by γ-irradiation of blood lymphocytes from EDS patients and healthy subjects at low doses (0.1, 0.2 and 0.3 Gy). Results show a significant increase level of spontaneous and radiation-induced chromosomal aberrations in children suffering from EDS in comparison with the control subjects (p < 0.05). In conclusion, children with EDS express higher background chromosome aberration frequency and increased radiosensitivity. These findings suggest specific susceptibility of EDS patients and importance of future investigation on risks of diagnostics and therapy which include radiation and genotoxic agents.


Assuntos
Anormalidades Induzidas por Radiação/genética , Aberrações Cromossômicas/efeitos da radiação , Síndrome de Ehlers-Danlos/genética , Anormalidades da Pele/genética , Adolescente , Criança , Pré-Escolar , Síndrome de Ehlers-Danlos/fisiopatologia , Feminino , Genoma Humano/efeitos da radiação , Humanos , Instabilidade Articular/etiologia , Instabilidade Articular/genética , Masculino , Doses de Radiação , Tolerância a Radiação/genética , Radiação Ionizante , Anormalidades da Pele/etiologia
13.
PLoS Genet ; 14(11): e1007823, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30485262

RESUMO

Ultraviolet (UV) light-induced mutations are unevenly distributed across skin cancer genomes, but the molecular mechanisms responsible for this heterogeneity are not fully understood. Here, we assessed how nucleosome structure impacts the positions of UV-induced mutations in human melanomas. Analysis of mutation positions from cutaneous melanomas within strongly positioned nucleosomes revealed a striking ~10 base pair (bp) oscillation in mutation density with peaks occurring at dinucleotides facing away from the histone octamer. Additionally, higher mutation density at the nucleosome dyad generated an overarching "translational curvature" across the 147 bp of DNA that constitutes the nucleosome core particle. This periodicity and curvature cannot be explained by sequence biases in nucleosomal DNA. Instead, our genome-wide map of UV-induced cyclobutane pyrimidine dimers (CPDs) indicates that CPD formation is elevated at outward facing dinucleotides, mirroring the oscillation of mutation density within nucleosome-bound DNA. Nucleotide excision repair (NER) activity, as measured by XR-seq, inversely correlated with the curvature of mutation density associated with the translational setting of the nucleosome. While the 10 bp periodicity of mutations is maintained across nucleosomes regardless of chromatin state, histone modifications, and transcription levels, overall mutation density and curvature across the core particle increased with lower transcription levels. Our observations suggest structural conformations of DNA promote CPD formation at specific sites within nucleosomes, and steric hindrance progressively limits lesion repair towards the nucleosome dyad. Both mechanisms create a unique extended mutation signature within strongly positioned nucleosomes across the human genome.


Assuntos
Melanoma/genética , Mutação , Neoplasias Induzidas por Radiação/genética , Nucleossomos/genética , Neoplasias Cutâneas/genética , Cromatina/genética , Cromatina/efeitos da radiação , Reparo do DNA , DNA de Neoplasias/genética , Feminino , Genoma Humano/efeitos da radiação , Código das Histonas/genética , Código das Histonas/efeitos da radiação , Humanos , Masculino , Modelos Genéticos , Nucleossomos/efeitos da radiação , Neoplasias da Próstata/genética , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
14.
Environ Health ; 17(1): 43, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720177

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) was the predominant leukemia in a recent study of Chornobyl cleanup workers from Ukraine exposed to radiation (UR-CLL). Radiation risks of CLL significantly increased with increasing bone marrow radiation doses. Current analysis aimed to clarify whether the increased risks were due to radiation or to genetic mutations in the Ukrainian population. METHODS: A detailed characterization of the genomic landscape was performed in a unique sample of 16 UR-CLL patients and age- and sex-matched unexposed general population Ukrainian-CLL (UN-CLL) and Western-CLL (W-CLL) patients (n = 28 and 100, respectively). RESULTS: Mutations in telomere-maintenance pathway genes POT1 and ATM were more frequent in UR-CLL compared to UN-CLL and W-CLL (both p < 0.05). No significant enrichment in copy-number abnormalities at del13q14, del11q, del17p or trisomy12 was identified in UR-CLL compared to other groups. Type of work performed in the Chornobyl zone, age at exposure and at diagnosis, calendar time, and Rai stage were significant predictors of total genetic lesions (all p < 0.05). Tumor telomere length was significantly longer in UR-CLL than in UN-CLL (p = 0.009) and was associated with the POT1 mutation and survival. CONCLUSIONS: No significant enrichment in copy-number abnormalities at CLL-associated genes was identified in UR-CLL compared to other groups. The novel associations between radiation exposure, telomere maintenance and CLL prognosis identified in this unique case series provide suggestive, though limited data and merit further investigation.


Assuntos
Acidente Nuclear de Chernobyl , Genoma Humano/efeitos da radiação , Leucemia Linfocítica Crônica de Células B/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Exposição Ocupacional , Exposição à Radiação , Adulto , Estudos de Casos e Controles , Feminino , Seguimentos , Genômica , Humanos , Incidência , Leucemia Linfocítica Crônica de Células B/etiologia , Masculino , Pessoa de Meia-Idade , Neoplasias Induzidas por Radiação/etiologia , Prevalência , Doses de Radiação , Ucrânia/epidemiologia , Adulto Jovem
15.
Sci Rep ; 8(1): 5914, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651024

RESUMO

The radiological accident in Goiania in 1987 caused a trail of human contamination, animal, plant and environmental by a radionuclide. Exposure to ionizing radiation results in different types of DNA lesions. The mutagenic effects of ionizing radiation on the germline are special concern because they can endures for several generations, leading to an increase in the rate of mutations in children of irradiated parents. Thus, to evaluate the biological mechanisms of ionizing radiation in somatic and germline cells, with consequent determination of the rate mutations, is extremely important for the estimation of genetic risks. Recently it was established that Chromosomal Microarray Analysis is an important tool for detecting wide spectra of gains or losses in the human genome. Here we present the results of the effect of accidental exposure to low doses of ionizing radiation on the formation of CNVs in the progeny of a human population accidentally exposed to Caesium-137 during the radiological accident in Goiânia, Brazil.


Assuntos
Radioisótopos de Césio/efeitos adversos , Variações do Número de Cópias de DNA/genética , Genoma Humano/efeitos da radiação , Liberação Nociva de Radioativos , Adulto , Animais , Brasil/epidemiologia , Variações do Número de Cópias de DNA/efeitos da radiação , Poluição Ambiental/efeitos adversos , Pai , Feminino , Genoma Humano/genética , Células Germinativas/efeitos da radiação , Humanos , Masculino , Análise em Microsséries , Mães , Mutação , Plantas/genética , Plantas/efeitos da radiação , Radiação Ionizante
16.
J Invest Dermatol ; 138(2): 405-412, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28951242

RESUMO

Exposure to solar UVB radiation leads to the formation of the highly mutagenic cyclobutane pyrimidine dimers (CPDs), the DNA damage responsible for mutations found in skin cancer. The frequency of CPD formation and the repair rate of those lesions are two important parameters to determine the probability of UVR-induced mutations. Previous work has shown that chronic irradiation with sublethal doses of UVB radiation (chronic low-dose UVB radiation) leads to the accumulation of residual CPD that persists over time. We have thus investigated the persistence, localization, and consequences on genome stability of those chronic low-dose UVB radiation-induced residual CPDs. We show that chronic low-dose UVB radiation-induced residual CPDs persist on DNA and are diluted via semiconservative replication. They are overrepresented in the heterochromatin and at the TT dipyrimidine sites, and they catalyze the incidence of sister chromatin exchange. Our results shed some light on the impact of chronic UVB radiation exposure on DNA, with a focus on residual CPDs, their distribution, and consequences.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , Adulto , Biópsia , Reparo do DNA/genética , Replicação do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Fibroblastos , Genoma Humano/genética , Instabilidade Genômica/genética , Heterocromatina/genética , Heterocromatina/efeitos da radiação , Humanos , Cultura Primária de Células , Dímeros de Pirimidina/efeitos da radiação , Pele/citologia , Pele/patologia , Pele/efeitos da radiação , Adulto Jovem
17.
Adv Exp Med Biol ; 996: 207-219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29124702

RESUMO

Gradual depletion of the atmospheric ozone layer during the past few years has increased the incidence of solar UV radiation specifically the UV-C on earth's surface is one of the major environmental concerns because of the harmful effects of this radiation in all forms of life. The solar UV radiation including the harmful wavelength range of UV-B (280-320 nm) represents a significant climatic stress for both animals and plants, causing damage to the fundamental biomolecules such as DNA, proteins and lipids, thus activating genotoxic stress and induces genome instability. When DNA absorbs UV-B light, energy from the photon causes covalent linkages to form between adjacent pyrimidine bases, creating photoproducts, primarily cyclobutane pyrimidine dimers (CPDs) and pyrimidine-6,4-pyrimidinone photoproduct (6,4PPs). Pyrimidine dimers create distortions in the DNA strands and therefore can inhibit DNA replication as well transcription. Lack of efficient repair of UV-induced DNA damage may induce the formation of DNA double stand breaks (DSBs), one of the serious forms of damage in DNA double helix, as well as oxidative damage. Unrepaired DSBs in the actively dividing somatic cells severely affect cell growth and development, finally results in loss of cell viability and development of various diseases, such as cancer in man.This chapter mainly highlights the incidence of solar UV-radiation on earth's surface along with the formation of major types of UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and finally our present understanding on the impact on solar UV radiation on human health.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Nível de Saúde , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Genótipo , Humanos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/genética , Fenótipo , Fatores de Risco
18.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208747

RESUMO

Loss of wild-type p53 function is widely accepted to be permissive for the development of multinucleated giant cells. However, whether therapy-induced multinucleation is associated with cancer cell death or survival remains controversial. Herein, we demonstrate that exposure of p53-deficient or p21WAF1 (p21)-deficient solid tumor-derived cell lines to ionizing radiation (between 2 and 8 Gy) results in the development of multinucleated giant cells that remain adherent to the culture dish for long times post-irradiation. Somewhat surprisingly, single-cell observations revealed that virtually all multinucleated giant cells that remain adherent for the duration of the experiments (up to three weeks post-irradiation) retain viability and metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and the majority (>60%) exhibit DNA synthesis. We further report that treatment of multinucleated giant cells with pharmacological activators of apoptosis (e.g., sodium salicylate) triggers their demise. Our observations reinforce the notion that radiation-induced multinucleation may reflect a survival mechanism for p53/p21-deficient cancer cells. With respect to evaluating radiosensitivity, our observations underscore the importance of single-cell experimental approaches (e.g., single-cell MTT) as the creation of viable multinucleated giant cells complicates the interpretation of the experimental data obtained by commonly-used multi-well plate colorimetric assays.


Assuntos
Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Replicação do DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Células Gigantes/metabolismo , Células Gigantes/efeitos da radiação , Radiação Ionizante , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Mutação , Tolerância a Radiação/genética , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
19.
Clin Cancer Res ; 23(12): 3214-3222, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852700

RESUMO

Purpose: Squamous cell carcinoma of the anal canal (ASCC) accounts for 2% to 4% of gastrointestinal malignancies in the United States and is increasing in incidence; however, genomic features of ASCC are incompletely characterized. Primary treatment of ASCC involves concurrent chemotherapy and radiation (CRT), but the mutational landscape of resistance to CRT is unknown. Here, we aim to compare mutational features of ASCC in the pre- and post-CRT setting.Experimental Design: We perform whole-exome sequencing of primary (n = 31) and recurrent (n = 30) ASCCs and correlate findings with clinical data. We compare genomic features of matched pre- and post-CRT tumors to identify genomic features of CRT response. Finally, we investigate the mutational underpinnings of an extraordinary ASCC response to immunotherapy.Results: We find that both primary and recurrent ASCC tumors harbor mutations in genes, such as PIK3CA and FBXW7, that are also mutated in other HPV-associated cancers. Overall mutational burden was not significantly different in pre- versus post-CRT tumors, and several examples of shared clonal driver mutations were identified. In two cases, clonally related pre- and post-CRT tumors harbored distinct oncogenic driver mutations in the same cancer gene (KRAS or FBXW7). A patient with recurrent disease achieved an exceptional response to anti-programmed death (PD-1) therapy, and genomic dissection revealed high mutational burden and predicted neoantigen load.Conclusions: We perform comprehensive mutational analysis of ASCC and characterize mutational features associated with CRT. Although many primary and recurrent tumors share driver events, we identify several unique examples of clonal evolution in response to treatment. Clin Cancer Res; 23(12); 3214-22. ©2016 AACR.


Assuntos
Neoplasias do Ânus/genética , Carcinoma de Células Escamosas/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteína 7 com Repetições F-Box-WD/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Ânus/tratamento farmacológico , Neoplasias do Ânus/patologia , Neoplasias do Ânus/radioterapia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Quimiorradioterapia/efeitos adversos , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Feminino , Genoma Humano/efeitos dos fármacos , Genoma Humano/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Recidiva Local de Neoplasia , Tolerância a Radiação/genética
20.
PLoS Genet ; 12(10): e1006385, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27788131

RESUMO

Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600­13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.


Assuntos
Dano ao DNA/genética , Genoma Humano/genética , Mutação/efeitos da radiação , Neoplasias/genética , Pele/efeitos da radiação , Biópsia , Células Clonais/efeitos da radiação , Dano ao DNA/efeitos da radiação , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Genoma Humano/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese/genética , Mutação/genética , Taxa de Mutação , Neoplasias/etiologia , Neoplasias/patologia , Análise de Célula Única , Pele/patologia , Luz Solar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...