Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(9): e0046323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668368

RESUMO

Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.


Assuntos
Gentiana , Nicotiana , Tumores de Planta , Vírus de Plantas , Fatores de Virulência , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Nicotiana/metabolismo , Nicotiana/virologia , Xilema/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Folhas de Planta , Tumores de Planta/virologia , Transdução de Sinais , Fatores de Processamento de RNA
2.
Arch Virol ; 166(7): 1991-1997, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33929615

RESUMO

Tombusviruses have been identified in several crops, including gentian virus A (GeVA) in Japanese gentian. In this study, we isolated another tombusvirus, Sikte waterborne virus strain C1 (SWBV-C1), from Japanese gentian. Although SWBV-C1 and GeVA are not closely related, SWBV-C1, like GeVA, showed host-specific low-temperature-dependent replication in gentian and arabidopsis. The use of in vitro transcripts from full-length cDNA clones of SWBV-C1 genomic RNA as inocula confirmed these properties, indicating that the identified genomic RNA sequences encode viral factors responsible for the characteristic features of SWBV-C1.


Assuntos
DNA Complementar/genética , Gentiana/virologia , Tombusvirus/genética , Replicação Viral/genética , Sequência de Aminoácidos , Sequência de Bases/genética , Células Clonais , Clonagem Molecular/métodos , Genoma Viral/genética , Japão , Doenças das Plantas/virologia , RNA Viral/genética , Temperatura
3.
Virus Res ; 286: 198048, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32522536

RESUMO

Gentian virus A (GeVA), a novel tombusvirus isolated from Japanese gentian, has shown only a limited ability to infect Japanese gentians under experimental conditions. In this study, temperature was found to affect the efficient multiplication of GeVA in Japanese gentians. GeVA efficiently multiplied in inoculated leaves of gentians at 18 °C but not at 23 °C. This low-temperature (18 °C)-preferred GeVA multiplication was specifically observed in Japanese gentians and Arabidopsis thaliana but not in other experimental plants, including Nicotiana benthamiana. In A. thaliana, visible defense responses, including pathogenesis-related protein 1 expression, were not detected at 23 °C. Furthermore, several A. thaliana mutants, including those defective in RNA silencing, with altered plant immunities did not allow GeVA to multiply to detectable levels at 23 °C. Taken together, these data suggest that unique interaction between GeVA and gentians/A. thaliana, which is independent of RNA silencing, may underlie the low-temperature-preferred multiplication of GeVA.


Assuntos
Temperatura Baixa , Gentiana/virologia , Interações entre Hospedeiro e Microrganismos , Tombusvirus/fisiologia , Replicação Viral , Arabidopsis/virologia , Folhas de Planta/virologia , RNA Viral/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/patogenicidade
4.
Planta ; 248(6): 1431-1441, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30128602

RESUMO

MAIN CONCLUSION: Gentian plants ( Gentiana triflora ) severely restrict apple latent spherical virus (ALSV) invasion to the gametes (pollens and ovules) and block seed transmission to progeny plants. Early flowering of horticultural plants can be induced by infection of ALSV vector expressing Flowering Locus T (FT) gene. In the present study, flowering of gentian plants was induced by infection with an ALSV vector expressing a gentian FT gene and the patterns of seed transmission of ALSV in gentian were compared with those in apple and Nicotiana benthamiana. Infection of gentian progeny plants with ALSV was examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and enzyme-linked immunosorbent assay (ELISA). ALSV was not transmitted to the progeny gentian plants, whereas small proportions of apple and N. benthamiana progeny plants are infected with ALSV. The in situ hybridization analyses indicated that ALSVs are not present in gentian pollen and ovules, but detected in most of gametes in apple and N. benthamiana. Collectively, these results suggest that seed transmission of ALSV is blocked in gentian plants through the unknown barriers present in their gametes. On the other hand, apple and N. benthamiana seem to minimize ALSV seed transmission by inhibiting viral propagation in embryos.


Assuntos
Gentiana/virologia , Malus/virologia , Doenças das Plantas/virologia , Secoviridae/fisiologia , Gentiana/citologia , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/virologia , Malus/citologia , Doenças das Plantas/prevenção & controle , Reação em Cadeia da Polimerase , Secoviridae/genética , Plântula/citologia , Plântula/virologia , Sementes/citologia , Sementes/virologia , Nicotiana/citologia , Nicotiana/virologia
5.
Arch Virol ; 163(9): 2477-2483, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29786120

RESUMO

The DECS (dsRNA isolation, exhaustive amplification, cloning and sequencing) analysis technique for viral diagnosis detected a tombusvirus in Japanese gentian not displaying severe symptoms. We tentatively named this virus "gentian virus A" (GeVA). GeVA systemically but inefficiently infected Japanese gentian without causing visible symptoms, while it led to severe symptoms in some other plants. The complete genome sequence of GeVA indicated a typical tombusvirus-like structure. Phylogenetic analysis of the deduced amino acid sequences of four tombusvirus-encoded proteins did not reveal other known tombusviruses that were closely-related to GeVA, suggesting that it is a novel tombusvirus.


Assuntos
Genoma Viral , Gentiana/virologia , Doenças das Plantas/virologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Tombusvirus/genética , Sequência de Aminoácidos , Japão , Filogenia , Folhas de Planta/virologia , Nicotiana/virologia , Tombusvirus/classificação , Tombusvirus/isolamento & purificação
6.
J Gen Virol ; 96(Pt 2): 431-439, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351517

RESUMO

In this study, we identified a novel virus from gentian (Gentiana triflora) that causes ring-spots on ovaries. Furthermore, the virus causes unusual symptoms, ring-spots that appear specifically on the outer surface of the ovarian wall after pollination. Pollen grains carrying the virus were used to infect host plants by hand-pollination. RNA extracted from purified virions indicated that the virus had two segments, RNA1 and RNA2. The full-length cDNA sequence indicated that RNA1 had two ORFs: ORF1 had methyltransferase and helicase motifs, and ORF2 had an RNA-dependent RNA polymerase motif. RNA2 had five ORFs encoding a coat protein, triple gene block proteins 1-3 and a cysteine-rich protein. The length of RNA1 was 5519 bases and that of RNA2 was 3810 bases not including a polyU/polyA region between the first and second ORFs. Viral RNA does not have a polyA tail at the 3' end. Sequence similarity and phylogenetic analysis suggested that the virus is closely related to members of the genera Pecluvirus and Hordeivirus but distinct from them. These combined results suggest that the causal agent inducing ring-spot symptoms on gentian ovaries is a new virus belonging to the family Virgaviridae but not to any presently known genus. We tentatively name the virus gentian ovary ring-spot virus.


Assuntos
Gentiana/virologia , Doenças das Plantas/virologia , Polinização , Vírus de RNA/isolamento & purificação , Vírus não Classificados/isolamento & purificação , Zigoto/virologia , DNA Complementar/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética , Vírus não Classificados/genética
7.
J Gen Virol ; 94(Pt 10): 2360-2365, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907397

RESUMO

Gentian Kobu-sho-associated virus (GKaV) is a recently discovered novel virus from Kobu-sho (a hyperplastic or tumorous disorder)-affected Japanese gentians. To obtain insight into GKaV transmission and pathogenesis, the genetic diversity of the virus in the putative helicase and RNA-dependent RNA polymerase coding regions was studied. The extent of GKaV sequence diversity within single host plants differed within samples and between viral genomic regions. Phylogenetic analysis of 30 Kobu-sho-affected samples from different production areas and host cultivars revealed that GKaV populations have diverged as they became prevalent in different geographical regions. The diversification of GKaV was shown to be driven by geographical isolation rather than host adaptation; however, no geographical patterns were found. Therefore, it was not feasible to trace the pathway of GKaV spread.


Assuntos
Variação Genética , Gentiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Japão , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Prevalência
8.
Arch Virol ; 158(7): 1549-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23404460

RESUMO

We determined the complete nucleotide sequence of a broad bean wilt virus 2 (BBWV-2) isolate from gentian in Japan. The full-length RNA1 and RNA2 sequences, excluding poly(A) tails, were 5955 and 3600 nucleotides long, respectively. Analysis indicated that, in contrast to other BBWV-2 isolates, the 5' end of both RNA1 and RNA2 starts with a GUU sequence. We successfully inoculated Nicotiana benthamiana with BBWV-2 by infiltrating a mixed suspension of two Agrobacterium tumefaciens clones carrying binary vectors with the full-length RNA1 and RNA2 sequences. This is the first report on the efficient, easy and high-throughput use of agroinoculation for generating BBWV-2 infections.


Assuntos
Agrobacterium tumefaciens/genética , Fabavirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Gentiana/virologia , Transformação Genética , Fabavirus/isolamento & purificação , Genoma Viral , Japão , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Nicotiana/virologia
9.
PLoS One ; 5(3): e9670, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20351783

RESUMO

A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora x G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (-90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (-148 to -85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the -149 to -124 and -107 to -83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.


Assuntos
Caulimovirus/genética , Metilação de DNA , Elementos Facilitadores Genéticos , Gentiana/genética , Gentiana/virologia , Ilhas de CpG , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Oligonucleotídeos/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...