Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 257(1): 275-284, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31502105

RESUMO

Secretory structures were little studied in Gentianaceae. Glandular areas on the calyx dorsal region are commonly reported for Helieae species, the main tribe of Gentianaceae. So, the elucidation of nature of glandular areas is particularly relevant. Trichomes secreting mucilage, interpreted as colleters, are reported only for the sepals of Gentianinae species. We aimed to anatomically characterize and identify the nature of the calycinal secretory structures in Calolisianthus pedunculatus. Samples from floral buds, flowers, and fruits were collected, fixed, and processed following usual procedures for light and scanning electron microscopies. Histochemical tests were performed to determine the nature of the secretion. Glucose, fructose, and sucrose were measured with an ELISA reader. Colleters occur on the sepal ventral region and are composed of a multicellular secretory head and a stalk. These structures secrete polysaccharides and proteins, and the secretion is probably released through cuticle microchannels. Nectaries, on the other hand, occur on the sepal dorsal region. They are formed by 3-5 cells arranged in rosettes circling a central cell or pore. These structures also secrete polysaccharides (mainly fructose), lipids, and proteins. The identification of the secretory structures in the sepals of Calolisianthus pedunculatus highlights the importance of anatomical studies in this family. The interpretation of the glandular areas on the calyx of the Helieae species as nectaries has been proven, as well as the confirmation of colleters as common structures in the sepals of Gentianaceae. Besides the taxonomic and phylogenetic importance of nectars and colleters, we highlight the importance of the secretion for the protection of floral buds against dehydration.


Assuntos
Flores/anatomia & histologia , Flores/citologia , Gentianaceae/anatomia & histologia , Gentianaceae/citologia , Histocitoquímica , Flores/ultraestrutura , Frutas/anatomia & histologia , Frutas/ultraestrutura , Gentianaceae/ultraestrutura
2.
BMC Plant Biol ; 6: 29, 2006 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-17173704

RESUMO

BACKGROUND: Although the biosynthetic pathways for anthocyanins and their regulation have been well studied, the mechanism of anthocyanin accumulation in the cell is still poorly understood. Different models have been proposed to explain the transport of anthocyanins from biosynthetic sites to the central vacuole, but cellular and subcellular information is still lacking for reconciliation of different lines of evidence in various anthocyanin sequestration studies. Here, we used light and electron microscopy to investigate the structures and the formation of anthocyanic vacuolar inclusions (AVIs) in lisianthus (Eustoma grandiflorum) petals. RESULTS: AVIs in the epidermal cells of different regions of the petal were investigated. Three different forms of AVIs were observed: vesicle-like, rod-like and irregular shaped. In all cases, EM examinations showed no membrane encompassing the AVI. Instead, the AVI itself consisted of membranous and thread structures throughout. Light and EM microscopy analyses demonstrated that anthocyanins accumulated as vesicle-like bodies in the cytoplasm, which themselves were contained in prevacuolar compartments (PVCs). The vesicle-like bodies seemed to be transported into the central vacuole through the merging of the PVCs and the central vacuole in the epidermal cells. These anthocyanin-containing vesicle-like bodies were subsequently ruptured to form threads in the vacuole. The ultimate irregular AVIs in the cells possessed a very condensed inner and relatively loose outer structure. CONCLUSION: Our results strongly suggest the existence of mass transport for anthocyanins from biosynthetic sites in the cytoplasm to the central vacuole. Anthocyanin-containing PVCs are important intracellular vesicles during the anthocyanin sequestration to the central vacuole and these specific PVCs are likely derived directly from endoplasmic reticulum (ER) in a similar manner to the transport vesicles of vacuolar storage proteins. The membrane-like and thread structures of AVIs point to the involvement of intravacuolar membranes and/or anthocyanin intermolecular association in the central vacuole.


Assuntos
Antocianinas/biossíntese , Flores/metabolismo , Gentianaceae/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Flores/ultraestrutura , Gentianaceae/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Vesículas Transportadoras/ultraestrutura , Vacúolos/ultraestrutura
3.
Ann Bot ; 92(5): 657-72, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14500324

RESUMO

Minute granules of sporopollenin, called orbicules, can be observed on the innermost tangential and/or radial walls of secretory tapetum cells. Orbicules were investigated in 53 species of 34 Gentianaceae genera using light microscopy, scanning electron microscopy and transmission electron microscopy. This selection covered all different tribes and subtribes recognized in Gentianaceae (87 genera, +/-1650 species). Orbicules were found in 38 species (23 genera) distributed among the six tribes recognized in Gentianaceae. The orbicule typology is based on those described previously in Rubiaceae. Of the six orbicule types described previously, Type II orbicules are lacking. Type III orbicules are most common (17 species). Hockinia Gardner is the only representative with Type I orbicules. The number of representatives with orbicules belonging to the other orbicule types are equally distributed among the species studied: seven species possess Type IV orbicules, six species Type V and six species Type VI. The systematic usefulness of this typology is discussed in comparison with the latest systematic insights within the family, and palynological trends in Gentianaceae. Orbicule data have proven to be useful for evaluating tribal delimitation within Rubiaceae and Loganiaceae s.l.; however, they seem not to be useful for tribal delimitation in Gentianaceae. In the tribes Potalieae and Gentianeae orbicule data may be useful at subtribal level.


Assuntos
Variação Genética , Gentianaceae/genética , Gentianaceae/ultraestrutura , Grânulos Citoplasmáticos/ultraestrutura , Gentiana/classificação , Gentianaceae/classificação , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Swertia/classificação
4.
Plant Physiol ; 130(4): 1827-36, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481066

RESUMO

Two MADS box genes, Lily MADS Box Gene 2 (LMADS2) and Eustoma grandiflorum MADS Box Gene 1 (EgMADS1), with an extensive similarity to the petunia (Petunia hybrida) FLORAL BINDING PROTEIN 7/11 and Arabidopsis AGL11, were characterized from the lily (Lilium longiflorum) and lisianthus (Eustoma grandiflorum). The expression of LMADS2 and EgMADS1 mRNA was restricted to the carpel and was absent in the other flower organs or vegetative leaves. LMADS2 mRNA was detected mainly in ovules and weakly in style tissues of the carpel, whereas EgMADS1 mRNA was only expressed in the ovules. Transgenic Arabidopsis plants ectopically expressing LMADS2 or EgMADS1 showed similar novel phenotypes resembling 35S::AGAMOUS plants by significantly reducing plant size, flowering early, and losing inflorescence indeterminacy. Ectopic expression of these two genes also generated similar ap2-like flowers by inducing homeotic conversion of the sepals into carpel-like structures in which stigmatic papillae and ovules were observed. In addition, the petals were converted into stamen-like structures in the second whorl of 35S::LMADS2 and 35S::EgMADS1 transgenic Arabidopsis. Our data indicated that LMADS2 and EgMADS1 are putative D functional MADS box genes in lily and lisianthus with a function similar to C functional genes once ectopically expressed in Arabidopsis.


Assuntos
Arabidopsis/genética , Flores/genética , Gentianaceae/genética , Lilium/genética , Proteínas de Domínio MADS/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Flores/fisiologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Gentianaceae/fisiologia , Gentianaceae/ultraestrutura , Lilium/fisiologia , Lilium/ultraestrutura , Proteínas de Domínio MADS/metabolismo , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...