Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403669

RESUMO

2-chloro-4-nitroaniline is a nitroaromatic compound widely used in industrial and agricultural sectors, causing serious environmental problems. This compound and some of its analogs were utilized by two Fe3+-reducing microbial strains Geobacter sp. KT7 and Thauera aromatica KT9 isolated from contaminated sediment as sole carbon and nitrogen sources under anaerobic conditions. The anaerobic degradation of 2-chloro-4-nitroaniline by the mixed species was increased approximately by 45% compared to that of individual strains. The two isolates' crossfeeding, nutrient sharing and cooperation in the mixed culture accounted for the increase in degradation rates. The determination of degradation pathways showed that Geobacter sp. KT7 transformed the nitro group in 2-chloro-4-nitroaniline to the amino group following by the dechlorination process, while T. aromatica KT9 dechlorinated the compound before removing the nitro group and further transformed it to aniline. This study provided an intricate network of 2-chloro-4-nitroaniline degradation in the bacterial mixture and revealed two parallel routes for the substrate catabolism.


Assuntos
Compostos de Anilina/metabolismo , Geobacter/metabolismo , Thauera/metabolismo , Anaerobiose , Biodegradação Ambiental , Microbiologia Ambiental , Geobacter/classificação , Geobacter/genética , Redes e Vias Metabólicas , Filogenia , RNA Ribossômico 16S/genética , Thauera/classificação , Thauera/genética
3.
Adv Microb Physiol ; 74: 1-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31126529

RESUMO

The family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron. This metabolic specialization is complemented by versatile metabolic reactions, respiratory chains, and sensory networks that allow specific members to adaptively respond to environmental cues to integrate organic and inorganic contaminants in their oxidative and reductive metabolism, respectively. Thus, Geobacteraceae are important members of the microbial communities that degrade hydrocarbon contaminants under iron-reducing conditions and that contribute, directly or indirectly, to the reduction of radionuclides, toxic metals, and oxidized species of nitrogen. Their ability to produce conductive pili as nanowires for discharging respiratory electrons to solid-phase electron acceptors and radionuclides, or for wiring cells in current-harvesting biofilms highlights the unique physiological traits that make these organisms attractive biological platforms for bioremediation, bioenergy, and bioelectronics application. Here we review some of the most notable physiological features described in Geobacter species since the first model representatives were recovered in pure culture. We provide a historical account of the environmental research that has set the foundation for numerous physiological studies and the laboratory tools that had provided novel insights into the role of Geobacter in the functioning of microbial communities from pristine and contaminated environments. We pay particular attention to latest research, both basic and applied, that has served to expand the field into new directions and to advance interdisciplinary knowledge. The electrifying physiology of Geobacter, it seems, is alive and well 30 years on.


Assuntos
Condutividade Elétrica , Geobacter/fisiologia , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Biotecnologia , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons/fisiologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Geobacter/classificação , Metais/metabolismo , Oxirredução
4.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722806

RESUMO

Here, we describe the long-distance (multi-cell-length) extracellular electron transport (LD-EET) that occurs in an anode-grown mixed community biofilm (MCB) enriched from river sediment that contains 3%-45% Geobacter spp. High signal-to-noise temperature-dependent electrochemical gating measurements (EGM) using interdigitated microelectrode arrays reveal a peak-shaped electrical conductivity vs. potential dependency, indicating MCB acts as a redox conductor, similar to pure culture anode-grown Geobacter sulfurreducens biofilms (GSB). EGM also reveal that the maximum sustained rate of LD-EET in MCB is comparable to GSB, and the same whether under acetate-oxidizing or acetate-free conditions. Voltammetry indicated that MCB possesses 3- to 5-fold less electrode-accessible redox cofactors than GSB, suggesting that MCB may be more efficiently organized than GSB for LD-EET or that a small portion of electrode accessible redox cofactors of GSB are involved in LD-EET. The activation energy for LD-EET (0.11 ± 0.01 eV) was comparable to GSB, consistent with the possible role of c-type cytochromes as LD-EET cofactors, detected in abundance by confocal resonance Raman microscopy. Taken together, the results demonstrate LD-EET for a mixed community anode-grown microbial biofilm that is remarkably similar to GSB even though it contains many different types of microorganisms and appears to utilize far fewer EET redox cofactors.


Assuntos
Condutividade Elétrica , Transporte de Elétrons/fisiologia , Geobacter/fisiologia , Sedimentos Geológicos/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletrodos , Elétrons , Geobacter/classificação , Microscopia Confocal , Oxirredução , Rios/microbiologia
5.
Microb Ecol ; 75(4): 970-984, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29128951

RESUMO

Elevated uranium dose (4 g kg-1) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified. Genomic reconstruction and metabolic examination of these taxa reveal a host of divergent life strategies and putative niche partitioning. Resistance-nodulation-division heavy metal efflux (RND-HME) transporters are implicated as potential uranium tolerance strategies among the bacterial taxa. Potential interactions, uranium tolerance and ecologically relevant catabolism are presented in a conceptual model of life in this environment.


Assuntos
Bactérias/genética , Genômica , Sedimentos Geológicos/microbiologia , Metagenoma , Urânio/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos , DNA Bacteriano/genética , Tolerância a Medicamentos , Ecologia , Genes Bacterianos/genética , Geobacter/classificação , Geobacter/genética , Anotação de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
6.
Sci China Life Sci ; 61(7): 787-798, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29101585

RESUMO

Both activated carbon and magnetite have been reported to promote the syntrophic growth of Geobacter metallireducens and Geobacter sulfurreducens co-cultures, the first model to show direct interspecies electron transfer (DIET); however, differential transcriptomics of the promotion on co-cultures with these two conductive materials are unknown. Here, the comparative transcriptomic analysis of G. metallireducens and G. sulfurreducens co-cultures with granular activated carbon (GAC) and magnetite was reported. More than 2.6-fold reduced transcript abundances were determined for the uptake hydrogenase genes of G. sulfurreducens as well as other hydrogenases in those co-cultures to which conductive materials had been added. This is consistent with electron transfer in G. metallireducens-G. sulfurreducens co-cultures as evinced by direct interspecies electron transfer (DIET). Transcript abundance for the structural component of electrically conductive pili (e-pili), PilA, was 2.2-fold higher in G. metallireducens, and, in contrast, was 14.9-fold lower in G. sulfurreducens in co-cultures with GAC than in Geobacters co-cultures without GAC. However, it was 9.3-fold higher in G. sulfurreducens in co-cultures with magnetite than in Geobacters co-cultures. Mutation results showed that GAC can be substituted for the e-pili of both strains but magnetite can only compensate for that of G. sulfurreducens, indicating that the e-pili is a more important electron acceptor for the electron donor strain of G. metallireducens than for G. sulfurreducens. Transcript abundance for G. metallireducens c-type cytochrome gene GMET_RS14535, a homologue to c-type cytochrome gene omcE of G. sulfurreducens was 9.8-fold lower in co-cultures with GAC addition, while that for OmcS of G. sulfurreducens was 25.1-fold higher in co-cultures with magnetite, than in that without magnetite. Gene deletion studies showed that neither GAC nor magnetite can completely substitute the cytochrome (OmcE homologous) of G. metallireducens but compensate for the cytochrome (OmcS) of G. sulfurreducens. Moreover, some genes associated with central metabolism were up-regulated in the presence of both GAC and magnetite; however, tricarboxylic acid cycle gene transcripts in G. sulfurreducens were not highly-expressed in each of these amended co-cultures, suggesting that there was considerable redundancy in the pathways utilised by G. sulfurreducens for electron transfer to reduce fumarate with the amendment of GAC or magnetite. These results support the DIET model of G. metallireducens and G. sulfurreducens and suggest that e-pili and cytochromes of the electron donor strain are more important than that of the electron acceptor strain, indicating that comparative transcriptomics may be a promising route by which to reveal different responses of electron donor and acceptor during DIET in co-cultures.


Assuntos
Carvão Vegetal/metabolismo , Transporte de Elétrons/genética , Óxido Ferroso-Férrico/metabolismo , Geobacter/genética , Transcriptoma , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Cocultura , Fímbrias Bacterianas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Geobacter/classificação , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Oxirredução
7.
Microbiologyopen ; 6(5)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28766873

RESUMO

In this survey, a total of 80 787 reads and 28 171 unique NifH protein sequences were retrieved from soil RNA. This dataset extends our knowledge about the structure and diversity of the functional diazotrophic communities in agricultural soils from Argentinean Pampas. Operational taxonomic unit (OTU)-based analyses showed that nifH phylotypes related to Geobacter and Anaeromyxobacter (44.8%), Rhizobiales (29%), Cyanobacteria (16.7%), and Verrucomicrobiales (8%) are key microbial components of N2 fixation in soils associated with no-till management and soil depth. In addition, quantification of nifH gene copies related to Geobacter and Cyanobacteria revealed that these groups are abundant in soils under maize-soybean rotation and soybean monoculture, respectively. The correlation of physicochemical soil parameters with the diazotrophic diversity and composition showed that soil stability and organic carbon might contribute to the functional signatures of particular nifH phylotypes in fields under no-till management. Because crop production relies on soil-borne microorganism's activities, such as free N2 fixation, the information provided by our study on the diazotrophic population dynamics, associated with the edaphic properties and land-use practices, represents a major contribution to gain insight into soil biology, in which functionally active components are identified.


Assuntos
Cianobactérias/classificação , Cianobactérias/fisiologia , Geobacter/classificação , Geobacter/fisiologia , Fixação de Nitrogênio/genética , Oxirredutases/genética , Filogenia , RNA Bacteriano , Microbiologia do Solo , Agricultura , Biodiversidade , Biblioteca Gênica , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Int J Mol Sci ; 18(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067820

RESUMO

Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET) and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES's). Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES's. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens) constantly generate high current densities at a wide range of anode potentials (≥-0.3 or -0.2 V vs. Ag/AgCl), while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus) generate a relatively large current only at limited potential regions (-0.1 to -0.3 V vs. Ag/AgCl). The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades) of Geobacter.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/citologia , Eletricidade , Eletrodos , Transporte de Elétrons , Geobacter/classificação , Geobacter/metabolismo
9.
ISME J ; 10(2): 310-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26140532

RESUMO

Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.


Assuntos
Grupo dos Citocromos c/metabolismo , Geobacter/metabolismo , Urânio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Transporte de Elétrons , Compostos Férricos/metabolismo , Geobacter/classificação , Geobacter/genética , Geobacter/isolamento & purificação , Água Subterrânea/microbiologia , Dados de Sequência Molecular , Oxirredução , Filogenia , Proteômica , Alinhamento de Sequência
10.
Microb Genom ; 2(8): e000072, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28348867

RESUMO

The electrically conductive pili (e-pili) of Geobactersulfurreducens have environmental and practical significance because they can facilitate electron transfer to insoluble Fe(III) oxides; to other microbial species; and through electrically conductive biofilms. E-pili conductivity has been attributed to the truncated PilA monomer, which permits tight packing of aromatic amino acids to form a conductive path along the length of e-pili. In order to better understand the evolution and distribution of e-pili in the microbial world, type IVa PilA proteins from various Gram-negative and Gram-positive bacteria were examined with a particular emphasis on Fe(III)-respiring bacteria. E-pilin genes are primarily restricted to a tight phylogenetic group in the order Desulfuromonadales. The downstream gene in all but one of the Desulfuromonadales that possess an e-pilin gene is a gene previously annotated as 'pilA-C' that has characteristics suggesting that it may encode an outer-membrane protein. Other genes associated with pilin function are clustered with e-pilin and 'pilA-C' genes in the Desulfuromonadales. In contrast, in the few bacteria outside the Desulfuromonadales that contain e-pilin genes, the other genes required for pilin function may have been acquired through horizontal gene transfer. Of the 95 known Fe(III)-reducing micro-organisms for which genomes are available, 80 % lack e-pilin genes, suggesting that e-pili are just one of several mechanisms involved in extracellular electron transport. These studies provide insight into where and when e-pili are likely to contribute to extracellular electron transport processes that are biogeochemically important and involved in bioenergy conversions.


Assuntos
Fenômenos Eletromagnéticos , Fímbrias Bacterianas/genética , Geobacter/fisiologia , Transporte de Elétrons , Compostos Férricos , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Geobacter/classificação , Filogenia
11.
PLoS One ; 10(5): e0125888, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962149

RESUMO

The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.


Assuntos
Transferência Genética Horizontal , Geobacter/genética , Geobacter/metabolismo , Metacrilatos/metabolismo , Oxirredução , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Ordem dos Genes , Genoma Bacteriano , Geobacter/classificação , Dados de Sequência Molecular , Óperon , Filogenia
12.
Int J Syst Evol Microbiol ; 64(Pt 11): 3786-3791, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25139417

RESUMO

A novel Fe(III)-reducing bacterium, designated GSS01(T), was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01(T) were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16-40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C(16:0), C(18:0) and C(16:1)ω7c/C(16:1)ω6c. Strain GSS01(T) was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, m-cresol and phenol but not toluene, p-cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01(T) was most closely related to Geobacter sulfurreducens PCA(T) (98.3% sequence similarity) and exhibited low similarities (94.9-91.8%) to the type strains of other species of the genus Geobacter. The DNA-DNA relatedness between strain GSS01(T) and G. sulfurreducens PCA(T) was 41.4 ± 1.1%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01(T) is believed to represent a novel species of the genus Geobacter, and the name Geobacter soli sp. nov. is proposed. The type strain is GSS01(T) ( =KCTC 4545(T) =MCCC 1K00269(T)).


Assuntos
Florestas , Geobacter/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Compostos Férricos/metabolismo , Geobacter/genética , Geobacter/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Int J Syst Evol Microbiol ; 64(Pt 10): 3485-3491, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052395

RESUMO

A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)).


Assuntos
Compostos Férricos/metabolismo , Geobacter/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Geobacter/genética , Geobacter/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Microbes Environ ; 29(2): 145-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789988

RESUMO

The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Eletricidade , Eletroquímica , Eletrodos/microbiologia , Geobacter/classificação , Geobacter/genética , Eliminação de Resíduos de Serviços de Saúde , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
ISME J ; 8(5): 963-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24351938

RESUMO

Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development.


Assuntos
Carbono/metabolismo , Transporte de Elétrons , Geobacter/classificação , Geobacter/metabolismo , Microbiologia da Água , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Redes e Vias Metabólicas , Metais/metabolismo , Oxirredução , RNA Bacteriano/genética , RNA Ribossômico 16S/metabolismo
16.
J Gen Appl Microbiol ; 59(5): 325-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24201144

RESUMO

An ethanol-utilizing Fe(III)-reducing bacterial strain, OSK2A(T), was isolated from a lotus field in Aichi, Japan. Phylogenetic analysis of the 16S rRNA gene sequences of OSK2A(T) and related strains placed it within Geobacter sulfurreducens PCA(T). Strain OSK2A(T) was shown to be a Gram-negative, motile, rod-shaped bacterium, strictly anaerobic, 0.76-1.65 µm long and 0.28-0.45 µm wide. Its growth occurred at 20-40℃, pH 6.0-8.1, and it tolerated up to 1% NaCl. The G+C content of the genomic DNA was 61.2 mol% and DNA-DNA hybridization value with Geobacter sulfurreducens PCA(T) was 60.7%. The major respiratory quinone was MK-8. The major fatty acids were 16:1 ω7c, 16:0, 14:0, 15:0 iso, 16:1 ω5c, and 18:1 ω7c. Strain OSK2A(T) could utilize H2, ethanol, acetate, lactate, pyruvate, and formate as substrates with Fe(III)-citrate as electron acceptor. Amorphous Fe(III) hydroxide, Fe(III)-NTA, fumarate, malate, and elemental sulfur were utilized as electron acceptors with either acetate or ethanol as substrates. Results obtained from physiological, DNA-DNA hybridization, and chemotaxonomic tests support genotypic and phenotypic differentiation of strain OSK2A(T) from its closest relative. The isolate is assigned as a novel subspecies with the name Geobacter sulfurreducens subsp. ethanolicus, subsp. nov. (type strain OSK2A(T)=DSMZ 26126(T)=JCM 18752(T)).


Assuntos
Etanol/metabolismo , Compostos Férricos/metabolismo , Geobacter/classificação , Geobacter/isolamento & purificação , Microbiologia do Solo , Aerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Geobacter/genética , Geobacter/fisiologia , Concentração de Íons de Hidrogênio , Japão , Lotus/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredução , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
17.
ISME J ; 7(7): 1286-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23446832

RESUMO

The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.


Assuntos
Eucariotos/fisiologia , Geobacter/fisiologia , Água Subterrânea/parasitologia , Urânio/metabolismo , Acetatos/metabolismo , Biodegradação Ambiental , Eucariotos/classificação , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Geobacter/classificação , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Urânio/análise
18.
mBio ; 4(2): e00591-12, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23481604

RESUMO

UNLABELLED: Geobacter sulfurreducens strain KN400 was recovered in previous studies in which a culture of the DL1 strain of G. sulfurreducens served as the inoculum in investigations of microbial current production at low anode potentials (-400 mV versus Ag/AgCl). Differences in the genome sequences of KN400 and DL1 were too great to have arisen from adaptive evolution during growth on the anode. Previous deep sequencing (80-fold coverage) of the DL1 culture failed to detect sequences specific to KN400, suggesting that KN400 was an external contaminant inadvertently introduced into the anode culturing system. In order to evaluate this further, a portion of the gene for OmcS, a c-type cytochrome that both KN400 and DL1 possess, was amplified from the DL1 culture. HiSeq-2000 Illumina sequencing of the PCR product detected the KN400 sequence, which differs from the DL1 sequence at 14 bp, at a frequency of ca. 1 in 10(5) copies of the DL1 sequence. A similar low frequency of KN400 was detected with quantitative PCR of a KN400-specific gene. KN400 persisted at this frequency after intensive restreaking of isolated colonies from the DL1 culture. However, a culture in which KN400 could no longer be detected was obtained by serial dilution to extinction in liquid medium. The KN400-free culture could not grow on an anode poised at -400 mV. Thus, KN400 cryptically persisted in the culture dominated by DL1 for more than a decade, undetected by even deep whole-genome sequencing, and was only fortuitously uncovered by the unnatural selection pressure of growth on a low-potential electrode. IMPORTANCE: Repeated streaking of isolated colonies on solidified medium remains a common strategy for obtaining pure cultures, especially of difficult-to-cultivate microorganisms such as strict anaerobes. The results presented here demonstrate that verifying the purity of cultures obtained in this manner may be difficult because extremely rare variants can persist, undetectable with even deep genomic DNA sequencing. The only way to ensure that a culture is pure is to cultivate it from an initial single cell, which may be technically difficult for many environmentally significant microbes.


Assuntos
Eletrodos/microbiologia , Geobacter/crescimento & desenvolvimento , Geobacter/isolamento & purificação , Interações Microbianas , Coinfecção , Genes Bacterianos , Genótipo , Geobacter/classificação , Geobacter/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase
19.
Microbes Environ ; 28(1): 141-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23363619

RESUMO

Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Compostos Férricos/farmacologia , Geobacter/fisiologia , Fontes de Energia Bioelétrica , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Metabolismo Energético , Geobacter/classificação , Geobacter/efeitos dos fármacos , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
20.
Int J Syst Evol Microbiol ; 63(Pt 2): 442-448, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22493170

RESUMO

A novel species of Fe(III)-reducing bacterium, designated strain OSK6(T), belonging to the genus Geobacter, was isolated from lotus field mud in Japan. Strain OSK6(T) was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, gram-negative, motile, straight rod-shaped bacterium, 0.6-1.9 µm long and 0.2-0.4 µm wide. The growth of the isolate occurred at 20-40 °C with optima of 30-37 °C and pH 6.5-7.5 in the presence of up to 0.5 g NaCl l(-1). The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6(T) was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6(T) is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6(T) is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6(T) ( = DSM 24905(T) = JCM 17780(T)).


Assuntos
Compostos Férricos/metabolismo , Geobacter/classificação , Sedimentos Geológicos/microbiologia , Lotus/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Geobacter/genética , Geobacter/isolamento & purificação , Japão , Dados de Sequência Molecular , Nitratos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...