RESUMO
BACKGROUND: The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia. METHODS: We performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry. RESULTS: The nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs. CONCLUSIONS: Giardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.
Assuntos
Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Geraniltranstransferase/química , Giardia/enzimologia , Giardia/ultraestrutura , Leishmania/enzimologia , Leishmania/ultraestrutura , Aminoácidos/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Geraniltranstransferase/antagonistas & inibidores , Giardia/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Filogenia , Alinhamento de Sequência , Relação Estrutura-AtividadeRESUMO
Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.
Assuntos
Regulação Fúngica da Expressão Gênica , Geraniltranstransferase/química , Mutação Puntual , Saccharomyces cerevisiae/enzimologia , Terpenos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Hemiterpenos/metabolismo , Cinética , Engenharia Metabólica , Simulação de Acoplamento Molecular , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sesquiterpenos/metabolismo , Especificidade por Substrato , TermodinâmicaRESUMO
Matricaria recutita (L.), commonly known as chamomile, is one of the most valuable medicinal plants because it synthesizes a large number of pharmacologically active secondary metabolites known as α-bisabolol and chamazulene. Although the plant has been well characterized in terms of chemical constituents of essential oil as well as pharmacological properties, little is known about the genes responsible for biosynthesis of these compounds. In this study, we report a new full-length cDNA encoding farnesyl diphosphate synthase (FPS), a key enzyme in the pathway of biosynthesis of isoprenoids, from M. recutita. The cDNA of MrFPS comprises 1032 bp and encodes 343 amino acid residues with a calculated molecular mass of 39.4 kDa. The amino acid sequence homology and phylogenetic analysis indicated that MrFPS belongs to the plant FPS super-family and is closely related to FPS from the Asteraceae family. Expression of the MrFPS gene in Escherichia coli yielded FPS activity. Using real-time quantitative PCR, the expression pattern of the MrFPS gene was analyzed in different tissues of M. recutita as well as in response to methyl jasmonate. The expression analysis demonstrated that MrFPS expression varies in different tissues (with maximal expression in flowers and stems) and was significantly elevated in response to methyl jasmonate. This study will certainly enhance our understanding of the role of MrFPS in the biosynthesis and regulation of valuable secondary metabolites in M. recutita at a molecular level.
Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Geraniltranstransferase/genética , Matricaria/enzimologia , Matricaria/genética , Oxilipinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Genes de Plantas , Geraniltranstransferase/química , Geraniltranstransferase/isolamento & purificação , Matricaria/efeitos dos fármacos , Matricaria/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
Blumea balsamifera DC is a member of the Compositae family and is frequently used as traditional Chinese medicine. Blumea balsamifera is rich in monoterpenes, which possess a variety of pharmacological activities, such as antioxidant, anti-bacteria, and anti-viral activities. Farnesyl diphosphate synthase (FPS) is a key enzyme in the biosynthetic pathway of terpenes, playing an important regulatory role in plant growth, such as resistance and secondary metabolism. Based on the conserved oligo amino acid residues of published FPS genes from other higher plant species, a cDNA sequence, designated BbFPS, was isolated from B. balsamifera DC using polymerase chain reaction. The clones were an average of 1.6 kb and contained an open reading frame that predicted a polypeptide of 342 amino acids with 89.07% identity to FPS from other plants. The deduced amino acid sequence was dominated by hydrophobic regions and contained 2 highly conserved DDxxD motifs that are essential for proper functioning of FPS. Phylogenetic analysis indicated that FPS grouped with other composite families. Prediction of secondary structure and subcellular localization suggested that alpha helices made up 70% of the amino acids of the sequence.
Assuntos
Asteraceae/enzimologia , Asteraceae/genética , Genes de Plantas , Geraniltranstransferase/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Evolução Molecular , Geraniltranstransferase/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de ProteínaRESUMO
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
Assuntos
Basidiomycota/enzimologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geraniltranstransferase/genética , Fosfatos de Poli-Isoprenil/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Carbono/química , Carotenoides/biossíntese , Cromatografia em Camada Fina , Escherichia coli/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/química , Geraniltranstransferase/química , Dados de Sequência Molecular , Mutação , Plasmídeos , Engenharia de Proteínas , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Sesquiterpenos , Esteróis/química , Xantofilas/químicaRESUMO
As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 µM against tachyzoites of T. gondii and an IC50 of 0.051 µM against TgFPPS.
Assuntos
Antiparasitários/farmacologia , Difosfonatos/farmacologia , Geraniltranstransferase/química , Toxoplasma/enzimologia , Trypanosoma cruzi/enzimologia , Desenho de Fármacos , Relação Estrutura-Atividade , Toxoplasma/metabolismo , Trypanosoma cruzi/metabolismoRESUMO
Chagas' disease, caused by the Trypanosoma cruzi parasite, is one of the largest public health problems in the Western hemisphere, with 16-18 million people infected, and approximately 100 million people at risk. Many efforts towards the development of targeted antiparasitic agents have recently been described. Of interest, bisphosphonates, pyrophosphate analogs in which the oxygen bridge between the two phosphorus atoms has been replaced by a carbon substituted with different side chains, are able to inhibit the growth of T. cruzi. The enzyme T. cruzi farnesyl pyrophosphate synthase (TcFPPS) involved in the mevalonate pathway, has been recently identified as the target of bisphosphonates. The protein has 362 amino acids and a molecular mass of 41.2 kDa. Several sequence motifs found in other FPPSs are present in TcFPPS. In this study we have modeled the structure of TcFPPS based on the structure of the avian FPPS. We have characterized the interaction with its substrates, isopentyl pyrophosphate and dimethylallyl pyrophosphate, and the mechanism of inhibition by the potent bisphosphonate risedronate (K(i) of 0.032+/-0.002 microM) by means of molecular dynamics techniques. We propose that homorisedronate, which has an extra methylene and a K(i) of 8.17+/-1.36 microM, does not form strong hydrogen bonds with TYR 211 and THR 208, which may be responsible for its lower activity as compared to risedronate. Moreover, we were able to reproduce the structural changes that occur upon the binding of the third Mg2+ to the active site of the protein. Taken together, our results provide a structural model for the design of novel inhibitors that may prove useful for the treatment of Chagas' disease.