Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
Sci Rep ; 14(1): 12985, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839828

RESUMO

One third of people with psychosis become antipsychotic treatment-resistant and the underlying mechanisms remain unclear. We investigated whether altered cognitive control function is a factor underlying development of treatment resistance. We studied 50 people with early psychosis at a baseline visit (mean < 2 years illness duration) and follow-up visit (1 year later), when 35 were categorized at treatment-responsive and 15 as treatment-resistant. Participants completed an emotion-yoked reward learning task that requires cognitive control whilst undergoing fMRI and MR spectroscopy to measure glutamate levels from Anterior Cingulate Cortex (ACC). Changes in cognitive control related activity (in prefrontal cortex and ACC) over time were compared between treatment-resistant and treatment-responsive groups and related to glutamate. Compared to treatment-responsive, treatment-resistant participants showed blunted activity in right amygdala (decision phase) and left pallidum (feedback phase) at baseline which increased over time and was accompanied by a decrease in medial Prefrontal Cortex (mPFC) activity (feedback phase) over time. Treatment-responsive participants showed a negative relationship between mPFC activity and glutamate levels at follow-up, no such relationship existed in treatment-resistant participants. Reduced activity in right amygdala and left pallidum at baseline was predictive of treatment resistance at follow-up (67% sensitivity, 94% specificity). The findings suggest that deterioration in mPFC function over time, a key cognitive control region needed to compensate for an initial dysfunction within a social-emotional network, is a factor underlying development of treatment resistance in early psychosis. An uncoupling between glutamate and cognitive control related mPFC function requires further investigation that may present a future target for interventions.


Assuntos
Cognição , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Transtornos Psicóticos , Humanos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Masculino , Feminino , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/fisiopatologia , Adulto , Adulto Jovem , Ácido Glutâmico/metabolismo , Antipsicóticos/uso terapêutico , Antipsicóticos/farmacologia , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia
2.
Genes Brain Behav ; 23(3): e12906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861664

RESUMO

Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.


Assuntos
Arvicolinae , Comportamento Materno , Núcleo Accumbens , Ligação do Par , Receptores Opioides mu , Animais , Feminino , Arvicolinae/genética , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Comportamento Materno/fisiologia , Núcleo Accumbens/metabolismo , Gravidez , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Giro do Cíngulo/metabolismo , Área Pré-Óptica/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
3.
PLoS One ; 19(5): e0302470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701101

RESUMO

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Assuntos
Cognição , Giro do Cíngulo , Histamina , Inflamação , Lipopolissacarídeos , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Inflamação/metabolismo , Camundongos , Masculino , Histamina/sangue , Histamina/metabolismo , Ácido Caínico , Interleucina-6/sangue , Interleucina-6/metabolismo , Comportamento Animal , Rede Nervosa/fisiopatologia , Camundongos Endogâmicos C57BL
4.
Neuroimage ; 293: 120632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701994

RESUMO

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.


Assuntos
Envelhecimento , Glutationa , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Glutationa/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Adulto Jovem , Memória Espacial/fisiologia , Lobo Occipital/metabolismo , Giro do Cíngulo/metabolismo , Encéfalo/metabolismo
5.
Biol Res ; 57(1): 34, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812057

RESUMO

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Estresse do Retículo Endoplasmático , Giro do Cíngulo , Neuralgia , Ratos Sprague-Dawley , Animais , Eletroacupuntura/métodos , Giro do Cíngulo/metabolismo , Neuralgia/terapia , Masculino , Estresse do Retículo Endoplasmático/fisiologia , Ratos , Western Blotting , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hiperalgesia/terapia , Chaperona BiP do Retículo Endoplasmático
6.
Biochem Biophys Res Commun ; 721: 150145, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795633

RESUMO

Itch, a common somatic sensation, serves as a crucial protective system. Recent studies have unraveled the neural mechanisms of itch at peripheral, spinal cord as well as cerebral levels. However, a comprehensive understanding of the central mechanism governing itch transmission and regulation remains elusive. Here, we report the role of the medial septum (MS), an integral component of the basal forebrain, in modulating the acute itch processing. The increases in c-Fos+ neurons and calcium signals within the MS during acute itch processing were observed. Pharmacogenetic activation manipulation of global MS neurons suppressed the scratching behaviors induced by chloroquine or compound 48/80. Microinjection of GABA into the MS or pharmacogenetic inhibition of non-GABAergic neurons markedly suppressed chloroquine-induced scratching behaviors. Pharmacogenetic activation of the MS-ACC GABAergic pathway attenuated chloroquine-induced acute itch. Hence, our findings reveal that MS has a regulatory role in the chloroquine-induced acute itch through local increased GABA to inhibit non-GABAergic neurons and the activation of MS-ACC GABAergic pathway.


Assuntos
Cloroquina , Giro do Cíngulo , Prurido , Ácido gama-Aminobutírico , Cloroquina/farmacologia , Animais , Prurido/induzido quimicamente , Prurido/metabolismo , Prurido/tratamento farmacológico , Masculino , Ácido gama-Aminobutírico/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Núcleos Septais/metabolismo , Núcleos Septais/efeitos dos fármacos
7.
Transl Psychiatry ; 14(1): 200, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714646

RESUMO

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants. We conducted a double-blind, placebo-controlled 7-day experimental medicine study in 51 patients with major depressive disorder who were currently taking antidepressants but had an inadequate response to treatment. Participants received either ebselen 600 mg twice daily for seven days or identical matching placebo. An emotional testing battery, magnetic resonance spectroscopy and depression and anxiety rating scales were conducted at baseline and after seven days of treatment. Ebselen did not increase the recognition of positive facial expressions in the depressed patient group. However, ebselen increased the response bias towards fear emotion in the signal detection measurement. In the anterior cingulate cortex, ebselen significantly reduced the concentrations of inositol and Glx (glutamate+glutamine). We found no significant differences in depression and anxiety rating scales between visits. Our study did not find any positive shift in emotional bias in depressed patients with an inadequate response to antidepressant medication. We confirmed the ability of ebselen to lower inositol and Glx in the anterior cingulate cortex. These latter effects are probably mediated through inhibition of inositol monophosphatase and glutaminase respectively.


Assuntos
Antidepressivos , Azóis , Transtorno Depressivo Maior , Emoções , Isoindóis , Compostos Organosselênicos , Humanos , Feminino , Masculino , Compostos Organosselênicos/farmacologia , Método Duplo-Cego , Adulto , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Pessoa de Meia-Idade , Emoções/efeitos dos fármacos , Azóis/farmacologia , Espectroscopia de Ressonância Magnética , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem
8.
Schizophr Res ; 269: 58-63, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733800

RESUMO

N-acetylasparate and lactate are two prominent brain metabolites closely related to mitochondrial functioning. Prior research revealing lower levels of NAA and higher levels of lactate in the cerebral cortex of patients with schizophrenia suggest possible abnormalities in the energy supply pathway necessary for brain function. Given that stress and adversity are a strong risk factor for a variety of mental health problems, including psychotic disorders, we investigated the hypothesis that stress contributes to abnormal neuroenergetics in patients with schizophrenia. To test this hypothesis, we used the Stress and Adversity Inventory (STRAIN) to comprehensively assess the lifetime stressor exposure profiles of 35 patients with schizophrenia spectrum disorders and 33 healthy controls who were also assessed with proton magnetic resonance spectroscopy at the anterior cingulate cortex using 3 Tesla scanner. Consistent with the hypothesis, greater lifetime stressor exposure was significantly associated with lower levels of N-acetylasparate (ß = -0.36, p = .005) and higher levels of lactate (ß = 0.43, p = .001). Moreover, these results were driven by patients, as these associations were significant for the patient but not control group. Though preliminary, these findings suggest a possible role for stress processes in the pathophysiology of abnormal neuroenergetics in schizophrenia.


Assuntos
Ácido Aspártico , Ácido Láctico , Esquizofrenia , Estresse Psicológico , Humanos , Masculino , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Feminino , Adulto , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Espectroscopia de Ressonância Magnética
9.
Brain Res ; 1838: 148977, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705556

RESUMO

OBJECTIVE: Previous research has suggested a connection between major depressive disorder (MDD) and certain comorbidities, including gastrointestinal issues, thyroid dysfunctions, and glycolipid metabolism abnormalities. However, the relationships between these factors and asymmetrical alterations in functional connectivity (FC) in adults with MDD remain unclear. METHOD: We conducted a study on a cohort of 42 MDD patients and 42 healthy controls (HCs). Participants underwent comprehensive clinical assessments, including evaluations of blood lipids and thyroid hormone levels, as well as resting-state functional magnetic resonance imaging (Rs-fMRI) scans. Data analysis involved correlation analysis to compute the parameter of asymmetry (PAS) for the entire brain's functional connectome. We then examined the interrelationships between abnormal PAS regions in the brain, thyroid hormone levels, and blood lipid levels. RESULTS: The third-generation ultra-sensitive thyroid stimulating hormone (TSH3UL) level was found to be significantly lower in MDD patients compared to HCs. The PAS score of the left inferior frontal gyrus (IFG) decreased, while the bilateral posterior cingulate cortex (Bi-PCC) PAS increased in MDD patients relative to HCs. Notably, the PAS score of the left IFG negatively correlated with both TSH and total cholesterol (CHOL) levels. However, these correlations lose significance after the Bonferroni correction. CONCLUSION: MDD patients demonstrated abnormal asymmetry in resting-state FC (Rs-FC) within the fronto-limbic system, which may be associated with CHOL and thyroid hormone levels.


Assuntos
Encéfalo , Conectoma , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Hormônios Tireóideos/sangue , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia
10.
Biochem Pharmacol ; 225: 116264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710334

RESUMO

The retrosplenial cortex (RSC) plays a central role in processing contextual fear conditioning. In addition to corticocortical and thalamocortical projections, the RSC receives subcortical inputs, including a substantial projection from the nucleus incertus in the pontine tegmentum. This GABAergic projection contains the neuropeptide, relaxin-3 (RLN3), which inhibits target neurons via its Gi/o-protein-coupled receptor, RXFP3. To assess this peptidergic system role in contextual fear conditioning, we bilaterally injected the RSC of adult rats with an adeno-associated-virus (AAV), expressing the chimeric RXFP3 agonist R3/I5 or a control AAV, and subjected them to contextual fear conditioning. The R3/I5 injected rats did not display any major differences to control-injected and naïve rats but displayed a significantly delayed extinction. Subsequently, we employed acute bilateral injections of the specific RXFP3 agonist peptide, RXFP3-Analogue 2 (A2), into RSC. While the administration of A2 before each extinction trial had no impact on the extinction process, treatment with A2 before each acquisition trial resulted in delayed extinction. In related anatomical studies, we detected an enrichment of RLN3-immunoreactive nerve fibers in deep layers of the RSC, and a higher level of co-localization of RXFP3 mRNA with vesicular GABA transporter (vGAT) mRNA than with vesicular glutamate transporter-1 (vGLUT1) mRNA across the RSC, consistent with an effect of RLN3/RXFP3 signalling on the intrinsic, inhibitory circuits within the RSC. These findings suggest that contextual conditioning processes in the RSC involve, in part, RLN3 afferent modulation of local inhibitory neurons that provides a stronger memory acquisition which, in turn, retards the extinction process.


Assuntos
Extinção Psicológica , Medo , Receptores Acoplados a Proteínas G , Animais , Masculino , Medo/fisiologia , Medo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Ratos , Extinção Psicológica/fisiologia , Extinção Psicológica/efeitos dos fármacos , Relaxina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Receptores de Peptídeos
11.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38719447

RESUMO

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Assuntos
Giro do Cíngulo , Macaca mulatta , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiologia , Masculino , Feminino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Acetilcolina/metabolismo , Vias Neurais/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
12.
J Affect Disord ; 360: 176-187, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723680

RESUMO

BACKGROUND: It is widely known that sex differences have a significant impact on patients with major depressive disorder (MDD). This study aims to evaluate the sex-related connection between serum trace elements and changes in neurometabolism in the anterior cingulate cortex (ACC) of MDD patients. METHODS: 109 untreated MDD patients and 59 healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS) under resting conditions. We measured metabolic ratios in the ACC from both sides. Additionally, venous blood samples were taken from all participants to detect calcium (Ca), phosphorus, magnesium (Mg), copper (Cu), ceruloplasmin (CER), zinc (Zn), and iron (Fe) levels. We performed association and interaction analyses to explore the connections between the disease and gender. RESULTS: In individuals with MDD, the Cu/Zn ratio increased, while the levels of Mg, CER, Zn and Fe decreased. Male MDD patients had lower Cu levels, while female patients had an increased Cu/Zn ratio. We observed significant gender differences in Cu, CER and the Cu/Zn ratio in MDD. Male patients showed a reduced N-acetyl aspartate (NAA)/phosphocreatine + creatine (PCr + Cr) ratio in the left ACC. The NAA/PCr + Cr ratio decreased in the right ACC in patients with MDD. In the left ACC of male MDD patients, the Cu/Zn ratio was inversely related to the NAA/PCr + Cr ratio, and Fe levels were negatively associated with the GPC + PC/PCr + Cr ratio. CONCLUSIONS: Our findings highlight gender-specific changes in Cu homeostasis among male MDD patients. The Cu/Zn ratio and Fe levels in male MDD patients were significantly linked to neurometabolic alterations in the ACC.


Assuntos
Ácido Aspártico , Transtorno Depressivo Maior , Giro do Cíngulo , Ferro , Oligoelementos , Zinco , Humanos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/metabolismo , Masculino , Feminino , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Adulto , Oligoelementos/sangue , Oligoelementos/metabolismo , Zinco/sangue , Zinco/metabolismo , Ferro/metabolismo , Ferro/sangue , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/sangue , Pessoa de Meia-Idade , Fatores Sexuais , Fosfocreatina/metabolismo , Fosfocreatina/sangue , Ceruloplasmina/metabolismo , Cobre/sangue , Cobre/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Magnésio/sangue , Magnésio/metabolismo , Fósforo/sangue , Creatina/metabolismo , Creatina/sangue , Cálcio/sangue , Cálcio/metabolismo , Estudos de Casos e Controles
13.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2489-2500, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812153

RESUMO

This study aims to reveal the molecular mechanism of Chaijin Jieyu Anshen Tablets(CJJYAS) in regulating the abnormal anterior cingulate cortex(ACC)-ventral hippocampus(vHPC) glutaminergic neural circuit to alleviate synaptic remodeling of ventral hippocampal neurons in depressed rats. Firstly, the study used chemogenetics to localize glutaminergic adeno-associated virus(AAV) into the ACC brain region of rats. The model of depressed rats was established by chronic unpredictable mild stress(CUMS) combined with independent feeding. The rats were randomly divided into control group, model group, AAV empty group, AAV group, AAV+ glucocorticoid receptors(GR) blocker group, AAV+chemokine receptor 1(CX3CR1) blocker group, and AAV+CJJYAS group. Depressive-like behaviors of rats were evaluated by open-field, forced-swimming, and Morris water maze tests, combined with an animal behavior analysis system. The morphological and structural changes of ACC and vHPC neurons in rats were observed by hematoxylin-eosin(HE) staining. Immunofluorescence and nuclear phosphoprotein(c-Fos) were used to detect glutaminergic neural circuit activation of ACC-vHPC in rats. The changes in dendrites, synaptic spines, and synaptic submicrostructure of vHPC neurons were observed by Golgi staining and transmission electron microscopy, respectively. The expressions of synaptic remodeling-related proteins N-methyl-D-asprtate receptor 2A(GRIN2A), N-methyl-D-asprtate receptor 2B(GRIN2B), Ca~(2+)/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), mitogen-activated protein kinase-activated protein kinase 2(MK2), and a ubiquitous actin-binding protein(cofilin) in vHPC glutaminergic neurons of rats were detected by immunofluorescence and Western blot, respectively. The results indicated that the activated glutaminergic AAV aggravated the depressive-like behaviors phenotype of rats in the model group and deteriorated the damage of morphology and structure of ACC and vHPC neurons and synaptic ultrastructure. However, both GR and CX3CR1 bloc-kers could reverse the abnormal changes to varying degrees, suggesting that the abnormal activation of ACC-vHPC glutaminergic neural circuit mediated by GR/CX3CR1 signals in gliocytes in the ACC brain region may be closely related to the occurrence and development of depression. Interestingly, CJJYAS significantly inhibited the activation of the ACC-vHPC glutaminergic neural circuit induced by AAV and the elevated Glu level. Furthermore, CJJYAS could also effectively reverse the aggravation of depressive-like behaviors and synaptic remodeling of vHPC neurons of rats in the model group induced by the activated AAV. Additionally, the findings suggested that the molecular mechanism of CJJYAS in improving synaptic damage of vHPC neurons might be related to the regulation of synaptic remodeling-related signals such as NR/CaMKⅡ and MK2/cofilin. In conclusion, this research confirms that CJJYAS effectively regulates the abnormal ACC-vHPC glutaminergic neural circuit and alleviates the synaptic remodeling of vHPC glutaminergic neurons in depressed rats, and the molecular mechanism might be associated with the regulation of synapse-related NR/CaMKⅡ and MK2/cofilin signaling pathways, which may be the crucial mechanism of its antidepressant effect.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Giro do Cíngulo , Hipocampo , Neurônios , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Neurônios/metabolismo , Hipocampo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Sinapses/metabolismo , Plasticidade Neuronal , Humanos
14.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
15.
BMC Psychiatry ; 24(1): 320, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664663

RESUMO

BACKGROUND: 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration- which metabolites are included in the basis set used for analysis- would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. METHODS: To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. RESULTS: Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. CONCLUSIONS: Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting.


Assuntos
Ácido Glutâmico , Giro do Cíngulo , Espectroscopia de Prótons por Ressonância Magnética , Humanos , Giro do Cíngulo/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Adulto , Feminino , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto Jovem , Personalidade/fisiologia , Transtornos Psicóticos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Glutamina/metabolismo
16.
Neuroimage ; 293: 120619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679186

RESUMO

Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.


Assuntos
Catecolaminas , Cognição , Eletroencefalografia , Metilfenidato , Espectroscopia de Prótons por Ressonância Magnética , Ácido gama-Aminobutírico , Humanos , Ácido gama-Aminobutírico/metabolismo , Masculino , Adulto , Feminino , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Catecolaminas/metabolismo , Metilfenidato/farmacologia , Eletroencefalografia/métodos , Cognição/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Ritmo Teta/fisiologia , Ritmo Teta/efeitos dos fármacos , Função Executiva/fisiologia , Função Executiva/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia
17.
Eur J Neurosci ; 59(12): 3353-3375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654478

RESUMO

The anterior cingulate cortex (ACC) has been shown to be critical to many aspects of executive function including filtering irrelevant information, updating response contingencies when reinforcement contingencies change and stabilizing task sets. Nonspecific lesions to this region in rats produce a vulnerability to distractors that have gained salience through prior associations with reinforcement. These lesions also exacerbate cognitive fatigue in tests of sustained attention but do not produce global attentional impairments nor do they produce distractibility to novel distractors that do not have a prior association with reinforcement. To determine the neurochemical basis of these cognitive impairments, dopaminergically selective lesions of the ACC were made in both male and female Long-Evans, hooded rats prior to assessment in two attentional tasks. Dopaminergic lesions of the ACC increase the vulnerability of subjects to previously reinforced distractors and impede formation of an attentional set. Lesioned rats were not more susceptible to the effects of novel, irrelevant stimuli in a test of sustained attention as has been previously shown. Additionally, the effects of dopaminergic lesions were found to differ based on sex. Lesioned female, but not male, rats were more vulnerable than sham-lesioned females to the effects of prolonged testing and the removal of reinforcement during a test of sustained attention. Together, these data support the hypothesis that dopamine in the ACC is critical to filtering distractors whose salience has been gained through reinforcement.


Assuntos
Atenção , Giro do Cíngulo , Ratos Long-Evans , Animais , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Masculino , Feminino , Ratos , Atenção/fisiologia , Atenção/efeitos dos fármacos , Dopamina/metabolismo , Reforço Psicológico , Caracteres Sexuais
18.
J Psychiatr Res ; 173: 25-33, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479345

RESUMO

Increased levels of inflammation markers have been found in the peripheral tissue of individuals with bipolar disorder (BD), especially during mood episodes. Previous studies found distinctive inflammatory profiles across different brain regions, but potential associations with clinical symptoms are still lacking. This study aims to evaluate the association of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate of individuals with BD. Levels of IL-1ß, IL-6, IL-17A, cortisol, and C-reactive protein (CRP) were measured in the hippocampus and anterior cingulate of 14 BD individuals and their non-psychiatric controls. Neuropsychiatric symptoms present in the three months before death were assessed using the Neuropsychiatric Inventory (NPI). In the BD group, greater NPI scores were associated with higher IL-6 in the hippocampus (p = 0.011) and cingulate (p = 0.038) and higher IL-1ß (p = 0.039) in the hippocampus. After adjusting for age, sex and CDR, IL-1ß and IL-6 were still associated with higher NPI in the hippocampus. In correlation analysis considering both BD and their controls, moderate positive associations were found between NPI and IL-6 and cortisol in the hippocampus (p < 0.001 and p = 0.006) and cingulate (p = 0.024 and p = 0.016), IL-1ß (p < 0.001) and IL-17A in the hippocampus (p = 0.002). No difference in inflammatory markers was found according to type of psychotropic medication used. Hence, in individuals with BD, neuropsychiatric symptoms were differently associated with specific inflammatory cytokines and CRP in the hippocampus and cingulate. These results suggest that the neuroinflammatory changes occurring in BD may be more complex than previously expected and could be associated with clinical manifestations.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/tratamento farmacológico , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Interleucina-17/metabolismo , Interleucina-17/uso terapêutico , Interleucina-6/metabolismo , Hidrocortisona , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Proteína C-Reativa/metabolismo
19.
Pharmacol Res Perspect ; 12(2): e1188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483045

RESUMO

Considering the importance of pain and stress, we decided to investigate the intra-anterior cingulate cortex (ACC) microinjection of histamine and mepyramine alone and concurrently on acute pain induced by hot plate following restraint stress in male rats. 24-gauge, 10 mm stainless steel guide cannula was implanted over the ACC in the incised scalp of 4 groups. Restraint stress in healthy rats produced a significant increase (p < .05) in the pain threshold. The simultaneous microinjection of 4 µg/side histamine and 8 µg/side mepyramine as a histaminergic system inverse agonist in healthy nonrestraint animals did not affect the pain threshold. Although Histamine decreased the threshold of pain meaningfully, mepyramine elevated it in a significant manner (p < .05). In the restrained animals, intra-ACC microinjection of histamine produced no significant impact on the pain threshold. However, intra-ACC microinjection of mepyramine before histamine, significantly (p < .01) altered the result and enhanced the threshold of pain. The results of our study demonstrated that histaminergic neurons have an important role in the processing of pain in the ACC following restraint stress.


Assuntos
Histamina , Receptores Histamínicos H1 , Ratos , Masculino , Animais , Receptores Histamínicos H1/metabolismo , Giro do Cíngulo/metabolismo , Pirilamina , Nociceptividade , Agonismo Inverso de Drogas , Dor
20.
Horm Behav ; 162: 105536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522143

RESUMO

Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.


Assuntos
Ansiedade , Arvicolinae , Empatia , Giro do Cíngulo , Privação Paterna , Receptores de Ocitocina , Comportamento Social , Animais , Masculino , Giro do Cíngulo/metabolismo , Arvicolinae/fisiologia , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Feminino , Empatia/fisiologia , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...