Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 55(31): 4326-32, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27438891

RESUMO

On the periplasmic side of LacY, two conserved Gly-Gly pairs in helices II and XI (Gly46 and Gly370, respectively) and helices V and VIII (Gly159 and Gly262, respectively) allow close packing of each helix pair in the outward (periplasmic)-closed conformation. Previous studies demonstrate that replacing one Gly residue in each Gly-Gly pair with Trp leads to opening of the periplasmic cavity with abrogation of transport activity, but an increased rate of galactoside binding. To further investigate the role of the Gly-Gly pairs, 11 double-replacement mutants were constructed for each pair at positions 46 (helix II) and 262 (helix VIII). Replacement with Ala or Ser results in decreased but significant transport activity, while replacements with Thr, Val, Leu, Asn, Gln, Tyr, Trp, Glu, or Lys exhibit very little or no transport. Remarkably, however, the double mutants bind galactoside with affinities 10-20-fold higher than that of the pseudo-WT or WT LacY. Moreover, site-directed alkylation of a periplasmic Cys replacement indicates that the periplasmic cavity becomes readily accessible in the double-replacement mutants. Molecular dynamics simulations with the WT and double-Leu mutant in the inward-open/outward-closed conformation provide support for this interpretation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Simportadores/química , Simportadores/genética , Alquilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Transporte Biológico Ativo , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicilglicina/química , Glicilglicina/genética , Lactose/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Nitrofenilgalactosídeos/metabolismo , Periplasma/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Simportadores/metabolismo
2.
Mol Cell ; 44(2): 325-40, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21906983

RESUMO

Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes.


Assuntos
Proteoma/metabolismo , Ubiquitina/metabolismo , Células Cultivadas , Proteínas Culina/metabolismo , Glicilglicina/genética , Células HCT116 , Humanos , Lisina/genética , Proteômica , Ubiquitinação
3.
Biochemistry ; 39(24): 7316-9, 2000 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-10852732

RESUMO

The regulatory and substrate binding domains of D-3-phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) from Escherichia coli are connected by a single polypeptide strand that contains a Gly-Gly sequence approximately midway between the domains. The potential flexibility of this sequence and its strategic location between major domain structures suggests that it may function in the conformational change leading from effector binding to inhibition of the active site. Site-directed mutagenesis of this region (Gly-336-Gly-337) supports this hypothesis. When bulky side chains were substituted for the glycines at these positions, substantial changes in the ability of serine to inhibit the enzyme were seen with little effect on the activity of the enzyme. The effect of these substitutions could be alleviated by placing a new glycine residue at position 335, immediately flanking the original glycine pair. On the other hand, substituting a glycine at position 338 revealed a critical role for the side chain of Arg-338. This residue may function in stabilizing the conformation about the Gly-Gly turn, resulting in a specific orientation of the adjacent domains relative to each other. Rotation about the phi or psi bonds of either Gly-336 or Gly-337 would have a profound effect on this orientation. The data are consistent with this as a role for the Gly-Gly sequence between the regulatory and substrate binding domains of PGDH.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Escherichia coli/enzimologia , Glicilglicina/metabolismo , Sítios de Ligação , Desidrogenases de Carboidrato/genética , Glicilglicina/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosfoglicerato Desidrogenase , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...