Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.650
Filtrar
1.
Reprod Domest Anim ; 59(6): e14643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877774

RESUMO

Progesterone has been shown to stimulate glycogen catabolism in uterine epithelial cells. Acid α-glucosidase (GAA) is an enzyme that breaks down glycogen within lysosomes. We hypothesized that progesterone may stimulate glycogenolysis in the uterine epithelium via GAA. We found that GAA was more highly expressed in the stroma on Day 1 than on Day 11. However, GAA did not appear to differ in the epithelium on Days 1 and 11. Progesterone (0-10 µM) had no effect on the levels of the full-length inactive protein (110 kDa) or the cleaved (active) peptides present inside the lysosome (70 and 76 kDa) in immortalized bovine uterine epithelial (BUTE) cells. Furthermore, the activity of GAA did not differ between the BUTE cells treated with 10 µM progesterone or control. Overall, we confirmed that GAA is present in the cow endometrium and BUTE cells. However, progesterone did not affect protein levels or enzyme activity.


Assuntos
Endométrio , Progesterona , alfa-Glucosidases , Animais , Bovinos , Feminino , Endométrio/metabolismo , Endométrio/enzimologia , Progesterona/farmacologia , Progesterona/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/genética , Células Epiteliais/metabolismo , Glicogenólise , Lisossomos/enzimologia , Lisossomos/metabolismo , Glicogênio/metabolismo
2.
Mol Med ; 30(1): 88, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879491

RESUMO

BACKGROUND: Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. METHODS: Here, we took glycogen synthetase kinase 3ß (GSK3ß) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. RESULTS: NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca2+ through the lysosomal Ca2+ channel mucolipin-2 (Mcoln2). At the same time, the released Ca2+ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. CONCLUSION: Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF.


Assuntos
Fibrose , Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta/metabolismo , Miofibroblastos/metabolismo , Glicogênio/metabolismo , Cálcio/metabolismo , Lisossomos/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Masculino , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 14(1): 13670, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871968

RESUMO

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio , Células-Tronco Neoplásicas , Fosfoenolpiruvato Carboxiquinase (GTP) , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Glicogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicogenólise , Via de Pentose Fosfato/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
4.
Nutrients ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794705

RESUMO

In the context of the increasing number of obese individuals, a major problem is represented by obesity and malnutrition in children. This condition is mainly ascribable to unbalanced diets characterized by high intakes of fat and sugar. Childhood obesity and malnutrition are not only associated with concurrent pathologies but potentially compromise adult life. Considering the strict correlation among systemic metabolism, obesity, and skeletal muscle health, we wanted to study the impact of juvenile malnutrition on the adult skeletal muscle. To this aim, 3-week-old C56BL/6 female and male mice were fed for 20 weeks on a high-fat. high-sugar diet, and their muscles were subjected to a histological evaluation. MyHCs expression, glycogen content, intramyocellular lipids, mitochondrial activity, and capillary density were analyzed on serial sections to obtain the metabolic profile. Our observations indicate that a high-fat, high-sugar diet alters the metabolic profile of skeletal muscles in a sex-dependent way and induces the increase in type II fibers, mitochondrial activity, and lipid content in males, while reducing the capillary density in females. These data highlight the sex-dependent response to nutrition, calling for the development of specific strategies and for a systematic inclusion of female subjects in basic and applied research in this field.


Assuntos
Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Músculo Esquelético , Animais , Feminino , Masculino , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismo , Camundongos , Fatores Sexuais , Açúcares da Dieta , Glicogênio/metabolismo , Caracteres Sexuais , Metabolismo dos Lipídeos
5.
Dokl Biochem Biophys ; 516(1): 58-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722403

RESUMO

The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.


Assuntos
Músculo Esquelético , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fadiga Muscular/efeitos dos fármacos , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , Natação , Glicogênio/metabolismo , Acetilcolinesterase/metabolismo , Fadiga/tratamento farmacológico , Nitrogênio da Ureia Sanguínea , Acetilcolina/metabolismo , Contração Muscular/efeitos dos fármacos , ATPase de Ca(2+) e Mg(2+)/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 334, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739161

RESUMO

Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.


Assuntos
Bactérias , Reatores Biológicos , Microbiota , Esgotos , Esgotos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Aerobiose , Suécia , Glicogênio/metabolismo , Amônia/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Purificação da Água/métodos
7.
Sci Total Environ ; 937: 173569, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38810751

RESUMO

Pesticides threat marine organisms worldwide. Among them, the Pacific oyster is a bivalve mollusc model in marine ecotoxicology. A large body of literature already stated on the multiple-scale effects pesticides can trigger in the Pacific oyster, throughout its life cycle and in a delayed manner. In particular, reproductive toxicity is of major concern because of its influence on population dynamics. However, past studies mostly investigated pesticide reprotoxicity as a direct effect of exposure during gametogenesis or directly on gametes and little is known about the influence of an early embryo exposure on the breed capacity. Therefore, we studied delayed and multigenerational consequences through gametogenesis features (i.e. sex ratio, glycogen content, gene expression) and reproductive success in two consecutive oyster generations (F0 and F1) exposed to an environmentally-relevant pesticide mixture (sum nominal concentration: 2.85 µg.L-1) during embryo-larval development (0-48 h post fertilization, hpf). In the first generation, glycogen content increased in exposed individuals and the expression of some gametogenesis target genes was modified. The reproductive success measured 48 hpf was higher in exposed individuals. A multigenerational influence was observed in the second generation, with feminisation, acceleration of gametogenesis processes and the sex-specific modification of glycogen metabolism in individuals from exposed parents. This study is the first to highlight the delayed effects on reproduction induced by an early exposure to pesticides, and its multigenerational implications in the Pacific oyster. It suggests that environmental pesticide contamination can have impacts on the recruitment and the dynamics of natural oyster populations exposed during their embryo-larval phase.


Assuntos
Praguicidas , Reprodução , Poluentes Químicos da Água , Animais , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Praguicidas/toxicidade , Crassostrea/efeitos dos fármacos , Crassostrea/fisiologia , Gametogênese/efeitos dos fármacos , Feminino , Masculino , Glicogênio/metabolismo
8.
Clin Exp Pharmacol Physiol ; 51(7): e13873, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815994

RESUMO

At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.


Assuntos
Eritromicina , Glicogênio , Fadiga Muscular , Músculo Esquelético , Orosomucoide , Resistência Física , Animais , Eritromicina/farmacologia , Eritromicina/análogos & derivados , Camundongos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Orosomucoide/metabolismo , Resistência Física/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
9.
Biomolecules ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785980

RESUMO

Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.


Assuntos
Autofagia , Doença de Depósito de Glicogênio Tipo II , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Animais , Glicogênio/metabolismo , Lisossomos/metabolismo , alfa-Glucosidases/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo
10.
Meat Sci ; 214: 109531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38701701

RESUMO

The rate of pH decline, early post-mortem, has been identified as a key factor that impacts the tenderness of meat, and manipulating this rate of pH decline is highly relevant to ensure consistent high quality meat. Ultrasound is a potential intervention in early post - mortem muscle that may have an impact on the rate of glycolysis through its ability to alter enzyme activity. Following a variety of different ultrasound treatments frequencies (25 and 45 kHz) and durations (15, 30 and 45 min), it was found, when analysed in muscle, that ultrasound treatment duration, specifically the 30 min treatment, and interaction between treatment duration and frequency, had a significant impact on the rate of pH decline, post - treatment. Frequency did not have a significant effect on the rate of pH decline, post - treatment, in muscle. Ultrasound did not have a significant permanent effect on the activity of glycolytic enzymes present in bovine Longissimus lumborum et thoracis muscle, where no significant differences were observed on the rate of pH decline and rate of change of reducing sugars, glycogen and lactic acid, when analysed in an in vitro glycolytic buffer. It seems that the impact observed in intact muscle is not as a consequence of a permanent change in enzymatic activity, instead indicating an impact on conditions in the muscle which enhanced enzyme activity.


Assuntos
Glicogênio , Glicólise , Músculo Esquelético , Carne Vermelha , Animais , Bovinos , Concentração de Íons de Hidrogênio , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Carne Vermelha/análise , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Mudanças Depois da Morte , Manipulação de Alimentos/métodos
11.
Proc Natl Acad Sci U S A ; 121(21): e2319707121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743622

RESUMO

Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and ß-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.


Assuntos
Parede Celular , Cryptococcus neoformans , Proteínas Fúngicas , Glucanos , Glicogênio , Parede Celular/metabolismo , Glicogênio/metabolismo , Glucanos/metabolismo , Proteínas Fúngicas/metabolismo , Cryptococcus neoformans/metabolismo , Glucosiltransferases/metabolismo , beta-Glucanas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38735624

RESUMO

During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.


Assuntos
Gluconeogênese , Glucose , Glicogênio , Takifugu , Animais , Takifugu/metabolismo , Takifugu/crescimento & desenvolvimento , Takifugu/genética , Glicogênio/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Embrião não Mamífero/metabolismo
13.
Pak J Pharm Sci ; 37(2): 321-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767099

RESUMO

Fatigue is a serious disturbance to human health, especially in people who have a severe disease such as cancer, or have been infected with COVID-19. Our research objective is to evaluate the anti-fatigue effect and mechanism of icariin through a mouse experimental model. Mice were treated with icariin for 30 days and anti-fatigue effects were evaluated by the weight-bearing swimming test, serum urea nitrogen test, lactic acid accumulation and clearance test in blood and the amount of liver glycogen. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-α) in the skeletal muscle of mice in each group were measured by western blotting. Results showed that icariin prolonged the weight-bearing swimming time of animals, reduced the serum urea nitrogen level after exercise, decreased the blood lactic acid concentration after exercise and increased the liver glycogen content observably. Compared to that in the control group, icariin upregulated AMPK and PGC1-α expression in skeletal muscle. Icariin can improve fatigue resistance in mice and its mechanism may be through improving the AMPK/PGC-1α pathway in skeletal muscle to enhance energy synthesis, decreasing the accumulation of metabolites and slowing glycogen consumption and decomposition.


Assuntos
Nitrogênio da Ureia Sanguínea , Fadiga , Flavonoides , Ácido Láctico , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Flavonoides/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Camundongos , Masculino , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Natação , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicogênio Hepático/metabolismo
14.
Carbohydr Polym ; 338: 122195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763710

RESUMO

Glycogen, a complex branched glucose polymer, is found in animals and bacteria, where it serves as an energy storage molecule. It has linear (1 â†’ 4)-α glycosidic bonds between anhydroglucose monomer units, with branch points connected by (1 â†’ 6)-α bonds. Individual glycogen molecules are referred to as ß particles. In organs like the liver and heart, these ß particles can bind into larger aggregate α particles, which exhibit a rosette-like morphology. The mechanisms and bonding underlying the aggregation process are not fully understood. For example, mammalian liver glycogen has been observed to be molecularly fragile under certain conditions, such as glycogen from diabetic livers fragmenting when exposed to dimethyl sulfoxide (DMSO), while glycogen from healthy livers is much less fragile; this indicates some difference, as yet unknown, in the bonding between ß particles in healthy and diabetic glycogen. This fragility may have implications for blood sugar regulation, especially in pathological conditions such as diabetes.


Assuntos
Glicogênio , Glicogênio/química , Glicogênio/metabolismo , Animais , Humanos , Diabetes Mellitus/metabolismo , Fígado/metabolismo
15.
New Phytol ; 243(1): 162-179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706429

RESUMO

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.


Assuntos
Glicogênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Synechocystis , Synechocystis/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Glicogênio/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Mutação/genética , Glucose/metabolismo , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Fosfoglucomutase/metabolismo , Fosfoglucomutase/genética
16.
Int J Biol Macromol ; 270(Pt 2): 132445, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772473

RESUMO

Glycogen is a highly branched glucose polymer that is an energy storage material in fungi and animals. Extraction of glycogen from its source in a way that minimizes its molecular degradation is essential to investigate its native structure. In this study, the following extraction methods were compared: sucrose gradient density ultracentrifugation, thermal alkali, hot alcohol and hot water extractions. Molecular-size and chain-length distributions of glycogen were measured by size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis, respectively. These two fine-structure features are the most likely structural characteristics to be degraded during extraction. The results show that the thermal alkali, hot alcohol and hot water extractions degrade glycogen molecular size and/or chain-length distributions, and that sucrose gradient density ultracentrifugation with neither high temperature nor alkaline treatment is the most suitable method for fungal glycogen extraction.


Assuntos
Glicogênio , Glicogênio/química , Glicogênio/metabolismo , Fungos/química , Peso Molecular , Fracionamento Químico/métodos , Cromatografia em Gel/métodos , Ultracentrifugação/métodos
17.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655926

RESUMO

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Assuntos
Drosophila melanogaster , Metabolismo Energético , Octopamina , Animais , Drosophila melanogaster/fisiologia , Octopamina/metabolismo , Memória/fisiologia , Glicogênio/metabolismo , Inanição , Sacarose/metabolismo , Memória de Longo Prazo/fisiologia , Ingestão de Alimentos/fisiologia
18.
Neotrop Entomol ; 53(3): 578-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687423

RESUMO

The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.


Assuntos
Dieta , Drosophila , Características de História de Vida , Animais , Drosophila/fisiologia , Metabolismo Energético , Feminino , Masculino , Glicogênio/metabolismo , Proteínas Alimentares , Carboidratos da Dieta
19.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38576169

RESUMO

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Assuntos
Alho , Glicogênio , Humanos , Glicogênio/metabolismo , Antioxidantes/metabolismo , Alho/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Mitocôndrias/metabolismo , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...