Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Free Radic Biol Med ; 82: 122-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660994

RESUMO

High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.


Assuntos
Metabolismo Energético/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Carbonilação Proteica/fisiologia , Aconitato Hidratase/biossíntese , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Ciclo do Ácido Cítrico/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Distrofina/genética , Glicogênio Fosforilase/biossíntese , Glicogênio Fosforilase/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Distrofia Muscular de Duchenne , NADH Desidrogenase/biossíntese , Estresse Oxidativo , Isoformas de Proteínas/genética , Troponina T/biossíntese , Troponina T/genética
3.
Biochem Biophys Res Commun ; 329(1): 161-7, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15721288

RESUMO

Yeast accumulate glycogen in response to nutrient limitation. The key enzymes of glycogen synthesis and degradation, glycogen synthase, and phosphorylase, are regulated by reversible phosphorylation. Phosphorylation inactivates glycogen synthase but activates phosphorylase. The kinases and phosphatases that control glycogen synthase are well characterized whilst the enzymes modifying phosphorylase are poorly defined. Here, we show that the cyclin-dependent protein kinase, Pho85p, which we have previously found to regulate glycogen synthase also controls the phosphorylation state of phosphorylase.


Assuntos
Quinases Ciclina-Dependentes/química , Regulação Enzimológica da Expressão Gênica , Glicogênio Fosforilase/biossíntese , Glicogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Regulação Fúngica da Expressão Gênica , Glicogênio Fosforilase/metabolismo , Modelos Biológicos , Fosforilação , Uridina Difosfato Glucose
4.
Mikrobiologiia ; 73(3): 388-92, 2004.
Artigo em Russo | MEDLINE | ID: mdl-15315233

RESUMO

The cloning and sequencing of the gap1 operon, which encodes the glycolytic NAD-specific glyceraldehyde-3-phosphate dehydrogenase in the cyanobacterium Synechococcus PCC 7942, showed that the gap1 gene is closely linked to the glgP gene encoding glycogen phosphorylase (an enzyme that catalyzes the first step of glycogen degradation). Northern blotting experiments showed that the gap1 and glgP genes are co-expressed and organized in a bicistronic operon, whose expression is enhanced under anaerobic conditions. The nucleotide sequence of the operon has been submitted to GenBank under accession number AF428099.


Assuntos
Genes Bacterianos , Glicogênio Fosforilase/genética , Óperon/fisiologia , Synechococcus/genética , Anaerobiose , Clonagem Molecular , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicogênio Fosforilase/biossíntese , Glicogênio Fosforilase/metabolismo , Dados de Sequência Molecular , Synechococcus/metabolismo
5.
Biochem Biophys Res Commun ; 309(1): 126-34, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12943673

RESUMO

The role of glycogenolysis in normal and cancer cells was investigated by inhibiting glycogen phosphorylase (GP) with the synthetic inhibitor CP-91,149. A549 non-small cell lung carcinoma (NSCLC) cells express solely the brain isozyme of GP, which was inhibited by CP-91,149 with an IC(50) of 0.5 microM. When treated with CP-91,149, A549 cells accumulated glycogen with associated growth retardation. Treated normal skin fibroblasts also accumulated glycogen with G1-cell cycle arrest that was associated with inhibition of cyclin E-CDK2 activity. Overall, cells expressing high levels of brain GP were growth inhibited by CP-91,149 correlating with glycogen accumulation whereas cells expressing low levels of brain GP were not affected by the drug. Analyses of 59 tumor cell lines represented in the NCI drug screen identified that every cell line expressed brain GP but the profile was dominated by a few highly GP expressing cell lines with lower than mean GP-a enzymatic activities. The correlation program, COMPARE, identified that the brain GP protein measured in the NCI cell lines corresponded with brain GP mRNA expression, ADP-ribosyltransferase 3, and colony stimulating factor 2 receptor alpha in the 10,000 gene microarray database with similar correlation coefficients. These results suggest that brain GP is present in proliferating cells and that high protein levels correspond with the ability of CP-91,149 to inhibit cell growth.


Assuntos
Amidas/farmacologia , Encéfalo/enzimologia , Quinases relacionadas a CDC2 e CDC28 , Divisão Celular/efeitos dos fármacos , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/biossíntese , Indóis/farmacologia , ADP Ribose Transferases/biossíntese , Algoritmos , Animais , Encéfalo/metabolismo , Células Cultivadas , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Bases de Dados como Assunto , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Citometria de Fluxo , Glicogênio/metabolismo , Humanos , Immunoblotting , Concentração Inibidora 50 , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores de Fator Estimulador de Colônias/biossíntese , Distribuição Tecidual , Células Tumorais Cultivadas
6.
J Neurochem ; 85(1): 73-81, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12641728

RESUMO

Isozyme-specific antibodies were raised against peptides from the low-homology regions of the sequences of rat glycogen phosphorylase BB and MM isozymes by immunization of rabbits and guinea pigs. Immunocytochemical double-labelling experiments on frozen sections of rat nervous tissues were performed to investigate the isozyme localization pattern. Astrocytes throughout the brain and spinal cord expressed both isozymes in perfect co-localization. Ependymal cells only expressed the BB isozyme. Most neurones were not immunoreactive. The rare neurones that contained glycogen phosphorylase only expressed the BB isozyme. Nearly all of these neurones formed part of the afferent somatosensory system. These findings stress the general importance of glycogen in neural energy metabolism and indicate a special role for the glycogen phosphorylase BB isozyme in neurones in the somatosensory system.


Assuntos
Vias Aferentes/enzimologia , Encéfalo/enzimologia , Glicogênio Fosforilase/biossíntese , Medula Espinal/enzimologia , Animais , Especificidade de Anticorpos , Astrócitos/citologia , Astrócitos/enzimologia , Glicogênio/metabolismo , Glicogênio Fosforilase/análise , Glicogênio Fosforilase Encefálica/análise , Glicogênio Fosforilase Encefálica/biossíntese , Glicogênio Fosforilase Muscular/análise , Glicogênio Fosforilase Muscular/biossíntese , Imuno-Histoquímica , Isoenzimas/análise , Isoenzimas/biossíntese , Neurônios/citologia , Neurônios/enzimologia , Ratos
7.
Biochim Biophys Acta ; 1570(1): 53-62, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11960689

RESUMO

We have previously shown that glucose deprivation activates glucose transport in a time- and protein synthesis-dependent fashion in 3T3-L1 adipocytes, a mouse cell line. Coincident with this is loss of glycogen. Because glycogen phosphorylase (GP) is responsible for glycogen degradation, we have examined its regulation to determine the relationship between transport activation and glycogen turnover. We first cloned the adipose GP cDNA and found sequence similarity to rat and human liver GP. Because the mouse liver GP cDNA sequence was unavailable, we cloned this cDNA as well and showed 100% identity between mouse adipose and liver sequences. A 3.1 kb transcript was readily observed in total RNA isolated from mouse liver or adipose by Northern blot analysis but, surprisingly, not in either total or poly(A) selected RNA from 3T3-L1 adipocytes. To evaluate regulation in 3T3-L1 adipocytes, we amplified GP mRNA from total RNA using multiplex, semi-quantitative PCR but found that expression did not change in response to deprivation. GP protein levels did not change either. However, endogenous GP activity from glucose-deprived cells was significantly elevated relative to controls, due to an increase in the phosphorylated form of GP (GPa). Finally, we overexpressed GP to determine its direct influence on the glucose transport system. These results were negative, which suggests that the nutrient control of glucose transport and GP occurs independently despite kinetic similarities in transport activation and glycogen turnover.


Assuntos
Adipócitos/metabolismo , Glucose/deficiência , Glicogênio Fosforilase/metabolismo , Células 3T3 , Adipócitos/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/química , Ativação Enzimática , Regulação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Glicogênio Fosforilase/biossíntese , Glicogênio Fosforilase/genética , Isoenzimas/biossíntese , Fígado/enzimologia , Camundongos , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
8.
Yeast ; 18(16): 1505-14, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11748727

RESUMO

Yeast glycogen metabolism responds to environmental stressors such as nutrient limitation and heat shock. This response is mediated, in part, by the regulation of the glycogen metabolic genes. Environmental stressors induce a number of glycogen metabolic genes, including GPH1, which encodes glycogen phosphorylase. Primer extension analysis detected two start sites for GPH1, one of which predominated. Sequences upstream of these sites included a possible TATA element. Mutation of this sequence reduced GPH1 expression by a factor of 10 but did not affect start site selection. This mutation also did not affect the relative induction of GPH1 upon entry into stationary phase. Three candidates for stress response elements (STREs) were found upstream of the TATA sequence. Mutation of the STREs showed that they were required for regulation of GPH1 expression in early stationary phase, and in response to osmotic shock and heat shock. These elements appeared to act synergistically, since the intact promoter exhibited 30-fold more expression in stationary phase than the sum of that observed for each element acting independently. HOG1, which encodes a MAP kinase, has been implicated in control mediated by STREs. For GPH1, induction by osmotic shock depended on a functional HOG1 allele. In contrast, induction upon entry into stationary phase was only partially dependent on HOG1. Furthermore, the heat shock response, which can also be mediated by STREs, was independent of HOG1. These observations suggest that the GPH1 STREs respond to more than one pathway, only one of which requires HOG1.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Glicogênio Fosforilase/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Bases , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Glicogênio/metabolismo , Glicogênio Fosforilase/biossíntese , Glicogênio Fosforilase/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pressão Osmótica , RNA Mensageiro/química , Proteínas Recombinantes , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Análise de Sequência de DNA , TATA Box/genética , beta-Galactosidase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...