Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.593
Filtrar
1.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931195

RESUMO

Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.


Assuntos
Transição Epitelial-Mesenquimal , Metaloproteinase 9 da Matriz , Metástase Neoplásica , Receptores Acoplados a Proteínas G , Edulcorantes , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/farmacologia , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Glicosilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fenótipo , Animais , Paladar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neuraminidase
2.
FEBS Lett ; 598(12): 1543-1553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782868

RESUMO

Tumor cells can express the immune checkpoint protein programmed death-1 (PD-1), but how cancer cell-intrinsic PD-1 is regulated in response to cellular stresses remains largely unknown. Here, we uncover a unique mechanism by which the chemotherapy drug doxorubicin (Dox) regulates cancer cell-intrinsic PD-1. Dox upregulates PD-1 mRNA while reducing PD-1 protein levels in tumor cells. Although Dox shortens the PD-1 half-life, it fails to directly induce PD-1 degradation. Instead, we observe that Dox promotes the interaction between peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase (NGLY1) and PD-1, facilitating NGLY1-mediated PD-1 deglycosylation and destabilization. The maintenance of PD-1 sensitizes tumor cells to Dox-mediated antiproliferative effects. Our study unveils a regulatory mechanism of PD-1 in response to Dox and highlights a potential role of cancer cell-intrinsic PD-1 in Dox-mediated antitumor effects.


Assuntos
Doxorrubicina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Receptor de Morte Celular Programada 1 , Doxorrubicina/farmacologia , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Glicosilação/efeitos dos fármacos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
PLoS One ; 19(5): e0303060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723008

RESUMO

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Assuntos
Dieta Hiperlipídica , Frutose , Hiperglicemia , Inflamação , Estresse Oxidativo , Rutina , Vitamina A , Animais , Rutina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Frutose/efeitos adversos , Ratos , Dieta Hiperlipídica/efeitos adversos , Vitamina A/farmacologia , Vitamina A/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/induzido quimicamente , Simulação de Acoplamento Molecular , Ratos Wistar , Modelos Animais de Doenças , Glicosilação/efeitos dos fármacos , Metformina/farmacologia , Hemoglobinas Glicadas/metabolismo , NF-kappa B/metabolismo , Hexoquinase/metabolismo , Catalase/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732122

RESUMO

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Assuntos
Condrócitos , Glucosamina , Homeostase , Fator 4 Semelhante a Kruppel , Espécies Reativas de Oxigênio , Silibina , Glucosamina/farmacologia , Glucosamina/metabolismo , Humanos , Silibina/farmacologia , Glicosilação/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico
5.
Am J Pathol ; 194(6): 1106-1125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749608

RESUMO

Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.


Assuntos
Proliferação de Células , Docetaxel , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-myc , Neoplasias da Língua , Docetaxel/farmacologia , Humanos , Neoplasias da Língua/patologia , Neoplasias da Língua/metabolismo , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Proliferação de Células/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Prognóstico , Feminino , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Movimento Celular/efeitos dos fármacos , Masculino
6.
J Food Sci ; 89(6): 3455-3468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700315

RESUMO

Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.


Assuntos
Produtos Finais de Glicação Avançada , Extratos Vegetais , Folhas de Planta , Soroalbumina Bovina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Soroalbumina Bovina/química , Coffea/química , Alcaloides/farmacologia , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Frutosamina , Cromatografia Líquida de Alta Pressão , Glioxal , Glucose/metabolismo , Simulação de Acoplamento Molecular , Glicosilação/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Rutina/farmacologia , Lisina/análogos & derivados , Cafeína/farmacologia , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Xantonas
7.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733638

RESUMO

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Lipossomos , Manosefosfatos , Fosfotransferases (Fosfomutases) , Humanos , Glicosilação/efeitos dos fármacos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Manosefosfatos/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Proteômica , Manose/metabolismo
8.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735264

RESUMO

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Manose , Humanos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Manose/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteômica
9.
Int J Biol Macromol ; 268(Pt 2): 131632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643911

RESUMO

Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.


Assuntos
Produtos Finais de Glicação Avançada , Hordeum , Proteínas de Plantas , Hidrolisados de Proteína , Soroalbumina Bovina , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hordeum/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Soroalbumina Bovina/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Glicosilação/efeitos dos fármacos
10.
J Ethnopharmacol ; 329: 118106, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570146

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia ficus-indica (L.) Mill is frequently observed in the Moroccan traditional medicinal system, where these approaches are employed to mitigate the onset of diabetes and the subsequent complications it may entail. AIM OF THE STUDY: The aim of this research was to examine the effectiveness of Opuntia ficus-indica seed oil in preventing diabetic complications. Specifically, the study assessed its ability to counteract glycation at various stages, protected red blood cells from the harmful effects of glycated albumin, and inhibited pancreatic lipase digestive enzymes to understand its potential antihyperglycemic properties. Additionally, the study aimed to identify the chemical components responsible for these effects, evaluate antioxidant and anti-inflammatory properties, and conduct computational investigations such as molecular docking. MATERIALS AND METHODS: The assessement of Opuntia ficus-indica seed oil antiglycation properties involved co-incubating the extract oil with a bovine serum albumin-glucose glycation model. The study investigated various stages of glycation, incorporating fructosamine (inceptive stage), protein carbonyls (intermediate stage), and AGEs (late stage). Additionally, measurement of ß-amyloid aggregation of albumin was performed using Congo red, which is specific to amyloid structures. Additionally, the evaluation of oil's safeguarding effect on erythrocytes against toxicity induced by glycated albumin included the measurement of erythrocyte hemolysis, lipid peroxidation, reduced glutathione. The fatty acid of Opuntia ficus-indica seed oil were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro evaluation of antihyperglycemic activity involved the use of pancreatic lipase enzyme, while the assessement of antioxidant capability was carried out through the utilization of the ABTS and FRAP methods. The in vitro assessement of the denaturation of albumin activity was also conducted. In conjunction with the experimental outcomes, computational investigations were undertaken, specifically employing ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Furthermore, molecular docking was utilized to predict antioxidant and antiglycation mechanisms based on protein targets. RESULTS: In vitro glycation assays, Opuntia ficus-indica seed oil displayed targeted inhibitory effects at multiple distinct stages. Within erythrocytes, in addition to mitigating hemolysis and lipid peroxidation induced by glycated albumin. GC-MS investigation revealed a richness of fatty acids and the most abundant compounds are Linoleic acid (36.59%), Palmitic acid (20.84%) and Oleic acid (19.33%) respectively. The findings of antioxidant ability showed a remarkable activity on FRAP and ABTS radicals. This oil showed a pronounced inhibitory impact (p < 0.001) on pancreatic lipase enzyme. It also exerted a notibale inhibition of albumin denaturation, in vitro. CONCLUSION: The identified results were supported by the abundant compounds of fatty acids unveiled through GC-MS analysis, along with the computational investigation and molecular docking.


Assuntos
Antioxidantes , Eritrócitos , Ácidos Graxos , Cromatografia Gasosa-Espectrometria de Massas , Simulação de Acoplamento Molecular , Opuntia , Estresse Oxidativo , Óleos de Plantas , Sementes , Opuntia/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sementes/química , Ácidos Graxos/química , Marrocos , Antioxidantes/farmacologia , Antioxidantes/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Produtos Finais de Glicação Avançada/metabolismo , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Lipase/antagonistas & inibidores , Lipase/metabolismo , Glicosilação/efeitos dos fármacos , Albumina Sérica Glicada , Humanos , Soroalbumina Bovina , Albumina Sérica/metabolismo
11.
Int J Biol Macromol ; 269(Pt 2): 131810, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677669

RESUMO

DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin. Ribose sugar served as the glycating agent inducing non-enzymatic glycation of DNA and subsequent DNA-AGEs formation. UV-vis and fluorescence spectroscopic methods were utilized to characterize DNA-AGE formation in vitro. Circular dichroism (CD) spectroscopy was used to observe the structural disruption of DNA caused by glycation. The changes in AGEs fluorescence intensity and melting temperature (Tm) were measured to assess the inhibition of glycation process by aloin and purpurin. These derivatives demonstrated inhibitory effects via binding to glycating sites of ct-DNA or by scavenging free radicals generated during glycation. The current study elucidates the inhibitory actions of aloin and purpurin on DNA glycation, suggesting their possible applications in mitigating the adverse consequences linked to increased ribose concentrations.


Assuntos
Antraquinonas , DNA , Produtos Finais de Glicação Avançada , Produtos Finais de Glicação Avançada/metabolismo , Antraquinonas/farmacologia , Antraquinonas/química , DNA/metabolismo , Glicosilação/efeitos dos fármacos , Animais , Bovinos , Emodina/farmacologia , Emodina/análogos & derivados , Emodina/química , Emodina/metabolismo , Espectrometria de Fluorescência
12.
J Pharm Biomed Anal ; 245: 116143, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678859

RESUMO

Centella asiatica (L.) Urb. is a small herbaceous plant belonging to the Apiaceae family that is rich in triterpenes, such as asiaticoside and madecassoside. Centella asiatica finds broad application in promoting wound healing, addressing skin disorders, and boosting both memory and cognitive function. Given its extensive therapeutic potential, this study aimed not only to investigate the Centella asiatica ethanolic extract but also to analyze the biological properties of its organic fractions, such as antioxidant antiglycation capacity, which are little explored. We also identified the main bioactive compounds through spectrometry analysis. The ethanolic extract (EE) was obtained through a static maceration for seven days, while organic fractions (HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; BF: n-butanol fraction and HMF: hydromethanolic fraction) were obtained via liquid-liquid fractionation. The concentration of phenolic compounds, flavonoids, and tannins in each sample was quantified. Additionally, the antiglycation (BSA/FRU, BSA/MGO, and ARG/MGO models) and antioxidant (FRAP, ORAC, and DPPH) properties, as well as the ability to inhibit LDL oxidation and hepatic tissue peroxidation were evaluated. The inhibition of enzyme activity was also analyzed (α-amylase, α-glycosidase, acetylcholinesterase, and butyrylcholinesterase). We also evaluated the antimicrobial and cytotoxicity against RAW 264.7 macrophages. The main compounds present in the most bioactive fractions were elucidated through ESI FT-ICR MS and HPLC-ESI-MS/MS analysis. In the assessment of antioxidant capacity (FRAP, ORAC, and DPPH), the EAF and BF fractions exhibited notable results, and as they are the phenolic compounds richest fractions, they also inhibited LDL oxidation, protected the hepatic tissue from peroxidation and inhibited α-amylase activity. Regarding glycation models, the EE, EAF, BF, and HMF fractions demonstrated substantial activity in the BSA/FRU model. However, BF was the only fraction that presented non-cytotoxic activity in RAW 264.7 macrophages at all tested concentrations. In conclusion, this study provides valuable insights into the antioxidant, antiglycation, and enzymatic inhibition capacities of the ethanolic extract and organic fractions of Centella asiatica. The findings suggest that further in vivo studies, particularly focusing on the butanol fraction (BF), may be promising routes for future research and potential therapeutic applications.


Assuntos
Antioxidantes , Centella , Lipoproteínas LDL , Oxirredução , Extratos Vegetais , Soroalbumina Bovina , Triterpenos , alfa-Amilases , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Centella/química , Antioxidantes/farmacologia , Antioxidantes/química , Camundongos , Oxirredução/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Soroalbumina Bovina/metabolismo , Lipoproteínas LDL/metabolismo , Triterpenos/farmacologia , Triterpenos/química , Células RAW 264.7
13.
J Food Sci ; 89(5): 3048-3063, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563092

RESUMO

Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.


Assuntos
Anti-Inflamatórios , Antioxidantes , Ácido Clorogênico , Camundongos Endogâmicos BALB C , Polifenóis , Saccharum , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Polifenóis/farmacologia , Camundongos , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Saccharum/química , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Ácido Clorogênico/farmacologia , Glicosilação/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Feminino , Extratos Vegetais/farmacologia , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo
14.
Biomed Pharmacother ; 175: 116632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663107

RESUMO

The H1 receptor belongs to the family of rhodopsin-like G-protein-coupled receptors activated by the biogenic amine histamine. H1 receptor antagonists are widely used in the treatment of allergies. However, these drugs could have a much broader spectrum of activity, including hypoglycemic effects, which can broaden the spectrum of their use. The aim of the study was to evaluate the antiglycation potential of twelve H1 receptor antagonists (diphenhydramine, antazoline, promethazine, ketotifen, clemastine, pheniramine, cetirizine, levocetirizine, bilastine, fexofenadine, desloratadine, and loratadine). Bovine serum albumin (BSA) was glycated with sugars (glucose, fructose, galactose, and ribose) and aldehydes (glyoxal and methylglyoxal) in the presence of H1 blockers. The tested substances did not induce a significant decrease in the content of albumin glycation end-products, and the inhibition rate of glycoxidation was not influenced by the chemical structure or generation of H1 blockers. None of the tested H1 receptor antagonists exhibited strong antiglycation activity. Antiglycemic potential of H1 blockers could be attributed to their antioxidant and anti-inflammatory activity, as well as their effects on carbohydrate metabolism/metabolic balance at the systemic level.


Assuntos
Produtos Finais de Glicação Avançada , Antagonistas dos Receptores Histamínicos H1 , Simulação de Acoplamento Molecular , Soroalbumina Bovina , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/química , Antagonistas dos Receptores Histamínicos H1/farmacologia , Animais , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Glicosilação/efeitos dos fármacos , Bovinos , Receptores Histamínicos H1/metabolismo
15.
Plant Foods Hum Nutr ; 79(2): 526-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530542

RESUMO

The antiglycation mechanisms of three structurally different salvianolic acids (Sals) including salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and salvianolic acid C (Sal-C) were investigated using the bovine serum albumin (BSA)-fructose model. The results showed that the three compounds could inhibit the formation of glycation products, maintain protein structural stability, mitigate the development of amyloid fibrils and scavenge radicals. Notably, Sal-A possessed the highest anti-glycated activity compared with Sal-B and Sal-C. This may be related to the fact that Sal-A contained the most molecules of caffeic acid (Sal-A, Sal-B, and Sal-C possessing two, one, and zero caffeic acid units, respectively), and caffeic acid played a leading role in the antiglycation properties relative to Danshensu. Moreover, these compounds quenched the intrinsic fluorescence intensity of BSA in a static mode, with the binding constants in the order of Sal-A > Sal-B > Sal-C. Obviously, Sal-A possessed the strongest binding affinity among these compounds, which may be one of the reasons why it exhibited the optimal antiglycation capability. Furthermore, molecular docking demonstrated that the three Sals exerted protective effects on BSA by preventing glycation modification of lysine and arginine residues. These findings would provide valuable insights into the potential application of Sals for alleviating non-enzymatic glycation of protein.


Assuntos
Benzofuranos , Ácidos Cafeicos , Lactatos , Polifenóis , Soroalbumina Bovina , Soroalbumina Bovina/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Glicosilação/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Benzofuranos/farmacologia , Benzofuranos/química , Lactatos/farmacologia , Lactatos/química , Alcenos/farmacologia , Alcenos/química , Animais , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Bovinos , Simulação de Acoplamento Molecular , Depsídeos
16.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269594

RESUMO

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutationa/análogos & derivados , Hesperidina/uso terapêutico , Lactoilglutationa Liase/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Resveratrol/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Quimioterapia Combinada , Indução Enzimática/efeitos dos fármacos , Glutationa/química , Glutationa/uso terapêutico , Glicosilação/efeitos dos fármacos , Hesperidina/química , Humanos , Resistência à Insulina/fisiologia , Lactoilglutationa Liase/antagonistas & inibidores , Camundongos , Estrutura Molecular , Neoplasias Experimentais/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/fisiopatologia , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Resveratrol/química
17.
Pharmacol Res Perspect ; 10(2): e00940, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212163

RESUMO

Anti-proinflammatory cytokine therapies against interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1 are major advancements in treating inflammatory diseases, especially rheumatoid arthritis. Such therapies are mainly performed by injection of antibodies against cytokines or cytokine receptors. We initially found that the glycolytic inhibitor 2-deoxy-d-glucose (2-DG), a simple monosaccharide, attenuated cellular responses to IL-6 by inhibiting N-linked glycosylation of the IL-6 receptor gp130. Aglycoforms of gp130 did not bind to IL-6 or activate downstream intracellular signals that included Janus kinases. 2-DG completely inhibited dextran sodium sulfate-induced colitis, a mouse model for inflammatory bowel disease, and alleviated laminarin-induced arthritis in the SKG mouse, an experimental model for human rheumatoid arthritis. These diseases have been shown to be partially dependent on IL-6. We also found that 2-DG inhibited signals for other proinflammatory cytokines such as TNF-α, IL-1ß, and interferon -γ, and accordingly, prevented death by another inflammatory disease, lipopolysaccharide (LPS) shock. Furthermore, 2-DG prevented LPS shock, a model for a cytokine storm, and LPS-induced pulmonary inflammation, a model for acute respiratory distress syndrome of coronavirus disease 2019 (COVID-19). These results suggest that targeted therapies that inhibit cytokine receptor glycosylation are effective for treatment of various inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Desoxiglucose/farmacologia , Glicosilação/efeitos dos fármacos , Inflamação/prevenção & controle , Receptores de Citocinas/efeitos dos fármacos , Animais , Células Cultivadas , Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Inflamação/induzido quimicamente , Janus Quinases/efeitos dos fármacos , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Citocinas/imunologia , Receptores de Citocinas/metabolismo , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
18.
Cell Rep ; 38(5): 110296, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108536

RESUMO

Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.


Assuntos
Anticorpos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Polissacarídeos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Anticorpos Neutralizantes/metabolismo , Membrana Celular/metabolismo , Glicosilação/efeitos dos fármacos , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
19.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053363

RESUMO

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Assuntos
Analgésicos/análise , Analgésicos/farmacologia , Colágeno/farmacologia , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Células Receptoras Sensoriais/citologia , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Substância P/metabolismo , beta-Endorfina/metabolismo
20.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011738

RESUMO

In non-small-cell lung cancer (NSCLC), concurrent mutations in the oncogene KRAS and tumor suppressor STK11 (also known as LKB1) confer an aggressive malignant phenotype, an unfavourability towards immunotherapy, and overall poor prognoses in patients. In a previous study, we showed that murine KRAS/LKB1 co-mutant tumors and human co-mutant cancer cells have an enhanced dependence on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), a rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP), which could be targeted to reduce survival of KRAS/LKB1 co-mutants. Here, we found that KRAS/LKB1 co-mutant cells also exhibit an increased dependence on N-acetylglucosamine-phosphate mutase 3 (PGM3), an enzyme downstream of GFPT2. Genetic or pharmacologic suppression of PGM3 reduced KRAS/LKB1 co-mutant tumor growth in both in vitro and in vivo settings. Our results define an additional metabolic vulnerability in KRAS/LKB1 co-mutant tumors to the HBP and provide a rationale for targeting PGM3 in this aggressive subtype of NSCLC.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Fosfoglucomutase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glicosilação/efeitos dos fármacos , Hexosaminas/biossíntese , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosfoglucomutase/antagonistas & inibidores , Fosfoglucomutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...