Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667548

RESUMO

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN's protection mechanism involves decreasing the binding affinity of CO to nitrogenase's active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase.


Assuntos
Proteínas de Bactérias/metabolismo , Monóxido de Carbono/farmacologia , Gluconacetobacter/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Proteínas de Bactérias/química , Catálise , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/genética , Cinética , Modelos Moleculares , Nitrogenase/química , Oxirredução , Domínios e Motivos de Interação entre Proteínas
2.
Microbes Environ ; 33(4): 440-445, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30404971

RESUMO

Gluconacetobacter diazotrophicus is a plant growth-promoting bacterium that is used as a bioinoculant. Phosphate (Pi) modulates intracellular polyphosphate (polyP) levels in Escherichia coli, affecting cellular fitness and biofilm formation capacity. It currently remains unclear whether environmental Pi modulates polyP levels in G. diazotrophicus to enhance fitness in view of its technological applications. In high Pi media, cells accumulated polyP and degraded it, thereby improving survival, tolerance to environmental stressors, biofilm formation capacity on abiotic and biotic surfaces, and competence as a growth promoter of strawberry plants. The present results support the importance of Pi and intracellular polyP as signals involved in the survival of G. diazotrophicus.


Assuntos
Biofilmes/crescimento & desenvolvimento , Gluconacetobacter/fisiologia , Polifosfatos/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Cobre/metabolismo , Citoplasma/metabolismo , Fragaria/crescimento & desenvolvimento , Fragaria/microbiologia , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/metabolismo , Fosfatos/farmacologia , Sais/metabolismo
3.
Environ Microbiol Rep ; 9(2): 85-90, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27886654

RESUMO

Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose. However, the molecular mechanisms involved in its response to high sucrose remain unknown. The present work aimed to identify sucrose-induced stress resistance genes in G. diazotrophicus PAl 5. Screening of a Tn5 transposon insertion library identified a mutant that was severely compromised in its resistance to high sucrose concentrations. Molecular characterization revealed that the mutation affected the kupA gene, which encodes a K+ uptake transporter (KupA). Functional complementation of the mutant with the wild type kupA gene recovered the sucrose-induced stress resistance phenotype. High sucrose resistance assay, under different potassium concentrations, revealed that KupA acts as a high-affinity K+ transporter, which is essential for resistance to sucrose-induced stress, when extracellular potassium levels are low. This study is the first to show the essential role of the KupA protein for resistance to sucrose-induced stress in bacteria by acting as a high-affinity potassium transporter in G. diazotrophicus PAl 5.


Assuntos
Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Potássio/metabolismo , Estresse Fisiológico , Sacarose/metabolismo , Elementos de DNA Transponíveis , Teste de Complementação Genética , Gluconacetobacter/genética , Mutagênese Insercional
4.
Arch Microbiol ; 198(3): 287-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26809283

RESUMO

Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.


Assuntos
Gluconacetobacter/fisiologia , Pressão Osmótica , Salinidade , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/crescimento & desenvolvimento , Plantas/microbiologia , Sais/farmacologia
5.
Rev. argent. microbiol ; 47(4): 335-343, dic. 2015. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-843139

RESUMO

It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH4NO3 on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8 mM of NH4NO3 (640 mg N/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH4NO3 (0.35 mM; 10 mg N/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH4NO3 (6.3 mM; 180 mg N/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100 dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus.


La población de Gluconacetobacter diazotrophicus asociada a la caña de azúcar disminuye después de la fertilización nitrogenada, lo cual podría ocurrir por la influencia directa del NH4NO3 sobre la supervivencia bacteriana, o por cambios en la fisiología de las plantas, que impiden el establecimiento bacteriano. En el presente trabajo se observó que en experimentos in vitro la supervivencia de G. diazotrophicus fue influenciada por 44,8 mM de NH4NO3 (640 mg N/plant). Además, G. diazotrophicus fue inoculado en plántulas micropropagadas de caña de azúcar, que fueron usadas para realizar experimentos de raíz dividida, en las que ambos extremos de los sistemas se fertilizaron con un nivel basal de NH4NO3 (0,35 mM; 10 mg N/planta). A los 20 días posteriores a la inoculación (dpi), la mitad de plantas fueron fertilizadas en uno de sus extremos con una dosis elevada de NH4NO3 (6,3 mM; 180 mg of N/plant). Este nivel fue menor al que afectó directamente a las células de G. diazotrophicus; sin embargo, provocó una disminución de la población bacteriana en comparación con plantas testigo fertilizadas con niveles basales de nitrógeno. La disminución de la población fue mayor para raíces fertilizadas con un nivel basal de nitrógeno en comparación con las raíces fertilizadas con altos niveles del mismo sistema de plantas (100 dpi; 80 días posfertilización). Estas observaciones indican que el alto nivel de nitrógeno añadido a las plantas inducen cambios fisiológicos sistémicos que afectan el establecimiento de G. diazotrophicus.


Assuntos
Fenômenos Fisiológicos Vegetais , Gluconacetobacter/efeitos dos fármacos , Fertilizantes/efeitos adversos , Fenômenos Fisiológicos Vegetais , Saccharum/crescimento & desenvolvimento , Saccharum/fisiologia , Fertilizantes/análise
6.
J Biosci Bioeng ; 119(6): 661-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25575969

RESUMO

Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.


Assuntos
Ácido Acético/metabolismo , Dosagem de Genes , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/metabolismo , Plasmídeos/biossíntese , Plasmídeos/genética , Ácido Acético/farmacologia , Acetobacter/genética , Escherichia coli/genética , Dosagem de Genes/efeitos dos fármacos , Vetores Genéticos/biossíntese , Vetores Genéticos/genética , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/genética , Plasmídeos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
7.
Antonie Van Leeuwenhoek ; 106(3): 497-506, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24974195

RESUMO

The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.


Assuntos
Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/fisiologia , Glucose/metabolismo , Percepção de Quorum/efeitos dos fármacos , Carbono/metabolismo , Redes Reguladoras de Genes , Gluconacetobacter/genética , Plantas/microbiologia
8.
Bioengineered ; 5(3): 173-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24717418

RESUMO

Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with ß-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.


Assuntos
Proteínas de Bactérias/genética , Frutanos/biossíntese , Gluconacetobacter/efeitos dos fármacos , Hexosiltransferases/genética , Fosfatos/farmacologia , Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Endófitos/efeitos dos fármacos , Endófitos/enzimologia , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Expressão Gênica , Gluconacetobacter/enzimologia , Gluconacetobacter/genética , Gluconacetobacter/crescimento & desenvolvimento , Hexosiltransferases/deficiência , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Fenótipo , Fosfatos/metabolismo , Polissacarídeos Bacterianos/biossíntese
9.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4739-45, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094182

RESUMO

Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications.


Assuntos
Celulose/química , Meios de Cultura/química , Dextrinas/química , Glucose/química , Manitol/química , Membranas Artificiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Celulose/metabolismo , Meios de Cultura/farmacologia , Fibroblastos/citologia , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/metabolismo , Humanos , Porosidade
10.
Bioresour Technol ; 135: 464-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23186663

RESUMO

An ionic liquid [AMIM]Cl was used to pretreat wheat straw with an aim to remarkably improve enzymatic hydrolysis rate and yield of fermentable sugars. Some influence factors including dosage of straw, particle size of straw meal as well as pretreatment time and temperature were investigated. After optimization, the hydrolytic efficiency of regenerated straw increased obviously as compared to untreated materials, and the sugar yield of straw was 71.2% after pretreatment in [AMIM]Cl at 110 °C for 1.5 h with a 3 w/w% straw dosage, 3.6 times higher than that of untreated straw (19.6%). The reason behind the acceleration of enzymatic hydrolysis was discussed by the analysis of SEM, XRD and FTIR. The yield of bacterial cellulose obtained in straw hydrolysates was higher than that in glucose-based media. This may be due to the presence of other complex components in the hydrolysate that would enhance the formation of bacterial cellulose.


Assuntos
Celulose/metabolismo , Gluconacetobacter/metabolismo , Triticum/metabolismo , Resíduos/análise , Biotransformação/efeitos dos fármacos , Celulase/metabolismo , Cristalização , Gluconacetobacter/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Líquidos Iônicos/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
11.
PLoS One ; 7(8): e42432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879982

RESUMO

Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.


Assuntos
Gluconacetobacter/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Ânions , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Flavoproteínas/química , Flavoproteínas/metabolismo , Gluconacetobacter/efeitos dos fármacos , Metais/metabolismo , Modelos Moleculares , NAD/farmacologia , Especificidade por Substrato/efeitos dos fármacos
12.
Int Microbiol ; 15(2): 69-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22847268

RESUMO

The mechanisms of cadmium, cobalt and zinc resistance were characterized in the plant-growth-promoting bacterium Gluconacetobacter diazotrophicus PAl 5. The resistance level of the wild-type strain was evaluated through the establishment of minimum inhibitory concentrations (MIC) of the soluble compounds CdCl2·H2O, CoCl2·6H2O and ZnCl2. Gluconacetobacter diazotrophicus PAl 5 was resistant to high concentrations of Cd, Co and Zn, with MICs of 1.2, 20 and 20 mM, respectively. Screening of an insertion library from transposon EZ-Tn5 in the presence of ZnO revealed that the mutant GDP30H3 was unable to grow in the presence of the compound. This mutant was also highly sensitive to CdCl2·H2O, CoCl2·6H2O and ZnCl2. Molecular characterization established that the mutation affected the czcA gene, which encodes a protein involved in metal efflux. In silico analysis showed that czcA is a component of the czcCBARS operon together with four other genes. This work provides evidence of the high tolerance of G. diazotrophicus PAl 5 to heavy metals and that czc is a determinant for metal resistance in this bacterium.


Assuntos
Cádmio/toxicidade , Cobalto/toxicidade , Gluconacetobacter/efeitos dos fármacos , Zinco/toxicidade , Sequência de Aminoácidos , Southern Blotting , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutagênese Insercional , Filogenia
13.
Curr Microbiol ; 59(6): 593-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19688374

RESUMO

In this study, the effect of glycine betaine as osmoprotectant compound for Gluconacetobacter diazotrophicus PAL5 was evaluated by kinetic growth parameters. Batch fermentation assays were performed employing media supplemented with different sodium chloride concentrations to simulate saline stress conditions. Salt concentrations of 50-300 mM led to decreased cell concentrations, while the maximum specific growth rates and cell productivities were reduced at concentrations above 100-mM NaCl. Salt inhibition was mainly observed in media with 200- and 300-mM NaCl, in which drastic changes in cell morphology were also noted. The addition of glycine betaine to the media showed to be efficient to counteract the salt inhibitory effect by increasing some fermentation parameters. However, the osmoprotectant was not able to revert the polymorphism promoted by higher salt concentrations.


Assuntos
Betaína/farmacologia , Gluconacetobacter/efeitos dos fármacos , Meios de Cultura/farmacologia , Gluconacetobacter/crescimento & desenvolvimento , Fixação de Nitrogênio/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
14.
Water Sci Technol ; 59(6): 1195-200, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19342816

RESUMO

In this study the cellulose production by Gluconacetobacter sp. GM5 was evaluated with a static semi-continuous fermentation, as well as the cellulose production adding ethanol 1.4% in a static discontinuous fermentation process and discontinuous fermentation in a rotary shaker with agitation speed of 250 rpm. All these experiments were done with vinasse as experimental culture media (MV) and it was compared with a standard medium containing glucose (MS). A 15% of inoculum was added to all treatments, and incubated at 29 degrees C. A sample of each one was extracted every 24 and 48 h in periods of 168, 192 and 362 h depending on the fermentation. During the cellulose production with media MV in semi-continuous process a synchronous phenomenon was observed, obtaining a rate of 0.878+/-0.033 g/l every 48 h. Adding ethanol 1.4% to the culture, with media MS the cellulose production was five times bigger and with media MV was duplicated.


Assuntos
Celulose/biossíntese , Meios de Cultura/química , Meios de Cultura/farmacologia , Fermentação , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/metabolismo , Etanol/metabolismo
15.
Biochim Biophys Acta ; 1784(11): 1578-89, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18662807

RESUMO

A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.


Assuntos
Gluconacetobacter/crescimento & desenvolvimento , Gluconacetobacter/metabolismo , Compostos de Nitrogênio/farmacologia , Proteoma/efeitos dos fármacos , Proteômica , Algoritmos , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Carbono/metabolismo , Proliferação de Células , Meios de Cultura/farmacologia , Eletroforese em Gel Bidimensional , Metabolismo Energético/fisiologia , Gluconacetobacter/química , Gluconacetobacter/efeitos dos fármacos , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Proteoma/análise
16.
Biochim Biophys Acta ; 1757(12): 1614-22, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16934215

RESUMO

In highly aerobic environments, Gluconacetobacter diazotrophicus uses a respiratory protection mechanism to preserve nitrogenase activity from deleterious oxygen. Here, the respiratory system was examined in order to ascertain the nature of the respiratory components, mainly of the cyanide sensitive and resistant pathways. The membranes of G. diazotrophicus contain Q(10), Q(9) and PQQ in a 13:1:6.6 molar ratios. UV(360 nm) photoinactivation indicated that ubiquinone is the electron acceptor for the dehydrogenases of the outer and inner faces of the membrane. Strong inhibition by rotenone and capsaicin and resistance to flavone indicated that NADH-quinone oxidoreductase is a NDH-1 type enzyme. KCN-titration revealed the presence of at least two terminal oxidases that were highly sensitive and resistant to the inhibitor. Tetrachorohydroquinol was preferentially oxidized by the KCN-sensitive oxidase. Neither the quinoprotein alcohol dehydrogenase nor its associated cytochromes c were instrumental components of the cyanide resistant pathway. CO-difference spectrum and photodissociation of heme-CO compounds suggested the presence of cytochromes b-CO and a(1)-CO adducts. Air-oxidation of cytochrome b (432 nm) was arrested by concentrations of KCN lower than 25 microM while cytochrome a(1) (442 nm) was not affected. A KCN-sensitive (I(50)=5 microM) cytochrome bb and a KCN-resistant (I(50)=450 microM) cytochrome ba quinol oxidases were separated by ion exchange chromatography.


Assuntos
Grupo dos Citocromos b/metabolismo , Gluconacetobacter/metabolismo , Proteínas de Bactérias/metabolismo , Coenzimas , Cianetos/farmacologia , Grupo dos Citocromos b/antagonistas & inibidores , Farmacorresistência Bacteriana , Gluconacetobacter/efeitos dos fármacos , NADH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
17.
FEMS Microbiol Ecol ; 54(1): 57-66, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329972

RESUMO

In this study the antagonistic activity among 55 Gluconacetobacter diazotrophicus strains, belonging to 13 electrophoretic types (ETs), in culture media was analyzed. Antagonistic effects were seen only in strains belonging to two ETs named ET-1 and ET-3. Two out of 29 ET-1 strains, and 3 out of 7 ET-3 strains of G. diazotrophicus showed antagonistic effects against many other strains belonging to all the ETs of this species analyzed, and against closely related strains of Gluconacetobacter species, including Gluconacetobacter johannae, Gluconacetobacter azotocaptans and Gluconacetobacter liquefaciens but not against other phylogenetically distant bacterial species. Results showed that the substance responsible of such antagonistic activity is a low molecular mass molecule (approximately 3400 Da), stable from pH 3.5 to 8.5, and very stable at 4 degrees C for 10 months. This substance was sensitive to proteases, and the antagonistic activity was lost after 2 h at 95 degrees C. All of these features show that the substance is related to bacteriocin-like molecules. The antagonistic substance should be chromosomally encoded because ET-3 strains of G. diazotrophicus do not harbor any plasmids. The antagonistic ability of ET-3 strains of G. diazotrophicus could be an advantage for the natural colonization of the sugarcane environment, as was observed in experiments with micropropagated sterile sugarcane plantlets co-inoculated with a bacteriocin-producer strain and a bacteriocin-sensitive strain of G. diazotrophicus. In these experiments, both in the rhizosphere as well as inside the roots, the bacteriocin-sensitive population decreased drastically. In addition, this study shows that inside the plants there may exist antagonistic interactions among endophytic bacteria like to those described among the rhizospheric community.


Assuntos
Bacteriocinas/biossíntese , Gluconacetobacter/crescimento & desenvolvimento , Saccharum/microbiologia , Meios de Cultura , Gluconacetobacter/efeitos dos fármacos
18.
Biochim Biophys Acta ; 1750(2): 154-65, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15925553

RESUMO

Gluconacetobacter diazotrophicus Pal-5 grew well and expressed nitrogenase activity in the absence of NH4+ and at initial O2 concentrations greater than 5% in the culture atmosphere. G. diazotrophicus nitrogenase consisted of two components, Gd1 and Gd2, which were difficult to separate but were purified individually to homogeneity. Their compositions were very similar to those of Azotobacter vinelandii nitrogenase, however, all subunits were slightly smaller in size. The purified Gd1 protein contained a 12:1 Fe/Mo ratio as compared to 14:1 found for Av1 purified in parallel. Both Gd2 and Av2 contained 3.9 Fe atoms per molecule. Dithionite-reduced Gd1 exhibited EPR features at g=3.69, 3.96, and 4.16 compared with 3.64 and 4.27 for Av1. Gd2 gave an S=1/2 EPR signal identical to that of Av2. A Gd1 maximum specific activity of 1600 nmol H2 (min mg of protein)(-1) was obtained when complemented with either Gd2 or Av2, however, more Av2 was required. Gd2 had specific activities of 600 and 1100 nmol H2 (min mg protein)(-1) when complemented with Av1 and Gd1, respectively. The purified G. diazotrophicus nitrogenase exhibited a narrowed pH range for effective catalysis compared to the A. vinelandii nitrogenase, however, both exhibited maximum specific activity at about pH 7. The Gd-nitrogenase was more sensitive to ionic strength than the Av-nitrogenase.


Assuntos
Gluconacetobacter/enzimologia , Nitrogenase/metabolismo , Saccharum/microbiologia , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Azotobacter vinelandii/enzimologia , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Gluconacetobacter/efeitos dos fármacos , Gluconacetobacter/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/química , Nitrogenase/isolamento & purificação , Oxirredução , Oxigênio/metabolismo , Oxigênio/farmacologia , Cloreto de Sódio/farmacologia , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...