Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.242
Filtrar
1.
J Agric Food Chem ; 72(28): 16032-16044, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975781

RESUMO

Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Transcriptoma , Glucosinolatos/metabolismo , Glucosinolatos/genética , Brassica/genética , Brassica/química , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolômica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/química
2.
Sci Rep ; 14(1): 15423, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965285

RESUMO

Leaf mustard (Brassica juncea L.) is explored for its biofumigant properties, derived from its secondary metabolites, particularly allyl isothiocyanate (AITC), produced during the enzymatic breakdown of glucosinolates like sinigrin. The research examines eight leaf mustard cultivars developed in Yeosu city, South Korea, focusing on their genetic characteristics, AITC concentration and nitriles formation rates from glucosinolates. Results indicate that the allelopathic effects, largely dependent on AITC concentration and enzymatic activity, vary across cultivar. Sinigrin and AITC constitute 79% and 36%, respectively, of glucosinolate and its hydrolysis products. The cultivar 'Nuttongii' demonstrates significant potential for inhibiting weeds, exhibiting the highest AITC concentration at 27.47 ± 6.46 µmole g-1 These outcomes highlight the importance of selecting mustard cultivars for biofumigation based on their glucosinolate profiles and hydrolysis product yields. The study also identifies a significant genetic influence on AITC and nitrile formation, suggesting that epithiospecifier protein modulation could enhance both allelopathic and other beneficial effects. Collectively, the research underscores the promise of mustard as a sustainable, environmentally friendly alternative to traditional herbicides.


Assuntos
Glucosinolatos , Isotiocianatos , Mostardeira , Nitrilas , Glucosinolatos/metabolismo , Glucosinolatos/química , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Nitrilas/química , Mostardeira/metabolismo , Mostardeira/genética , República da Coreia , Alelopatia
3.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998918

RESUMO

The Brassicaceae family, commonly referred to as cruciferous plants, is globally cultivated and consumed, with the Brassica genus being particularly renowned for its functional components. These vegetables are rich sources of nutrients and health-promoting phytochemicals, garnering increased attention in recent years. This study presents a comprehensive microscopic, chromatographic, and spectroscopic characterization of Brassica napus L. seeds from Kazakhstan aimed at elucidating their morphological features and chemical composition. Microscopic analysis revealed distinct localization of flavonoids, total lipids, and alkaloids. High-performance thin-layer chromatography (HPTLC) analysis of seed extracts demonstrated a complex chemical profile with significant quantities of non-polar compounds in the hexane extracts. Additionally, methanolic extracts revealed the presence of diverse chemical compounds, including alkaloids, flavonoids, and glucosinolates. The chemical composition exhibited varietal differences across different Brassica species, with B. napus L. seeds showing higher concentrations of bioactive compounds. Furthermore, liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis provided insights into the chemical composition, with sinapine isomers, feruloyl, and sinapoyl choline derivatives as major compounds in the seeds. This study contributes to a better understanding of the chemical diversity and quality control methods' approximations of B. napus L. seeds, highlighting their importance in functional food and nutraceutical applications.


Assuntos
Brassica napus , Sementes , Brassica napus/química , Sementes/química , Extratos Vegetais/química , Extratos Vegetais/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Cromatografia em Camada Fina/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Flavonoides/química , Alcaloides/análise , Alcaloides/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Glucosinolatos/análise , Glucosinolatos/química
4.
Nature ; 631(8019): 199-206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898276

RESUMO

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Assuntos
Bactérias , Microbioma Gastrointestinal , Glicosídeo Hidrolases , Polissacarídeos , Humanos , Acarbose/química , Acarbose/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biocatálise , Glucosinolatos/metabolismo , Glucosinolatos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Metagenoma , Oxirredução , Plantas/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Água do Mar/microbiologia , Microbiologia do Solo , Especificidade por Substrato , Masculino
5.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931238

RESUMO

Breast cancer is the most common tumor in women. Chemotherapy is the gold standard for cancer treatment; however, severe side effects and tumor resistance are the major obstacles to chemotherapy success. Numerous dietary components and phytochemicals have been found to inhibit the molecular and signaling pathways associated with different stages of breast cancer development. In particular, this review is focused on the antitumor effects of PUFAs, dietary enzymes, and glucosinolates against breast cancer. The major databases were consulted to search in vitro and preclinical studies; only those with solid scientific evidence and reporting protective effects on breast cancer treatment were included. A consistent number of studies highlighted that dietary components and phytochemicals can have remarkable therapeutic effects as single agents or in combination with other anticancer agents, administered at different concentrations and via different routes of administration. These provide a natural strategy for chemoprevention, reduce the risk of breast cancer recurrence, impair cell proliferation and viability, and induce apoptosis. Some of these bioactive compounds of dietary origin, however, show poor solubility and low bioavailability; hence, encapsulation in nanoformulations are promising tools able to increase clinical efficiency.


Assuntos
Neoplasias da Mama , Compostos Fitoquímicos , Humanos , Neoplasias da Mama/prevenção & controle , Feminino , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/administração & dosagem , Dieta , Quimioprevenção/métodos , Sinergismo Farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Glucosinolatos/farmacologia , Glucosinolatos/uso terapêutico , Glucosinolatos/administração & dosagem
6.
Biomolecules ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927041

RESUMO

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Assuntos
Antioxidantes , Brassica , Sequestradores de Radicais Livres , Extratos Vegetais , Folhas de Planta , Células RAW 264.7 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Folhas de Planta/química , Animais , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Brassica/química , Antioxidantes/farmacologia , Antioxidantes/química , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/química , Sicília , Glucosinolatos/farmacologia , Glucosinolatos/química
7.
J Agric Food Chem ; 72(23): 13217-13227, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809571

RESUMO

Myrosinase (Myr) catalyzes the hydrolysis of glucosinolates, yielding biologically active metabolites. In this study, glucoraphanin (GRA) extracted from broccoli seeds was effectively hydrolyzed using a Myr-obtained cabbage aphid (Brevicoryne brassicae) (BbMyr) to produce (R)-sulforaphane (SFN). The gene encoding BbMyr was successfully heterologously expressed in Escherichia coli, resulting in the production of 1.6 g/L (R)-SFN, with a remarkable yield of 20.8 mg/gbroccoli seeds, achieved using recombination E. coli whole-cell catalysis under optimal conditions (pH 4.5, 45 °C). Subsequently, BbMyr underwent combinatorial simulation-driven mutagenesis, yielding a mutant, DE9 (N321D/Y426S), showing a remarkable 2.91-fold increase in the catalytic efficiency (kcat/KM) compared with the original enzyme. Molecular dynamics simulations demonstrated that the N321D mutation in loopA of mutant DE9 enhanced loopA stability by inducing favorable alterations in hydrogen bonds, while the Y426S mutation in loopB decreased spatial resistance. This research lays a foundation for the environmentally sustainable enzymatic (R)-SFN synthesis.


Assuntos
Afídeos , Brassica , Glicosídeo Hidrolases , Isotiocianatos , Sulfóxidos , Sulfóxidos/química , Sulfóxidos/metabolismo , Animais , Isotiocianatos/metabolismo , Isotiocianatos/química , Afídeos/enzimologia , Afídeos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Brassica/genética , Brassica/enzimologia , Brassica/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Glucosinolatos/metabolismo , Glucosinolatos/química , Cinética , Simulação de Dinâmica Molecular , Oximas/química , Oximas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular Direcionada , Imidoésteres/metabolismo , Imidoésteres/química
8.
Food Chem ; 454: 139782, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795626

RESUMO

The effect of heat treatment on the abundant bioactive compounds in moringa seed kernels (MSKs) during different degrees of roasting remains sparingly explored despite the flour of roasted MSKs has been incorporated into the human diet (e.g., cakes, cookies, and burgers) as a substitute to enrich the nutritional content. Therefore, we investigated the impacts of different roasting conditions (e.g., temperature and duration) on bioactive compounds (e.g., glucosinolates (GSLs), phenolic acids and alkaloids) and antioxidant capacity of MSKs. Our results showed that light and medium roasting increased the glucomoringin (GMG, the main GSL in MSKs) content from 43.7 (unroasted MSKs) to 69.7-127.3 µmol/g MSKs (dry weight), while excessive/dark roasting caused thermally-induced degradation of GMG (trace/undetectable level) in MSKs, resulting in the formation of various breakdown products (e.g., thiourea, nitrile, and amide). In addition, although roasting caused a significant reduction of some phenolic compounds (e.g., gallic, chlorogenic, p-coumaric acids, and trigonelline), other phenolic acids (e.g., caffeic and ferulic acids) and alkaloids (e.g., caffeine, theobromine, and theophylline) remarkably increased after roasting, which may contribute to the enhanced total phenolic content (up to 2.9-fold) and antioxidant capacity (up to 5.8-fold) of the roasted MSKs.


Assuntos
Culinária , Temperatura Alta , Moringa , Fenóis , Sementes , Sementes/química , Fenóis/química , Fenóis/análise , Moringa/química , Antioxidantes/química , Antioxidantes/análise , Extratos Vegetais/química , Glucosinolatos/química , Glucosinolatos/análise
9.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791354

RESUMO

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Ligação a RNA , Fatores de Transcrição , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Plantas Geneticamente Modificadas
10.
J Agric Food Chem ; 72(19): 11278-11291, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708781

RESUMO

Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 µmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 µmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 µmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.


Assuntos
Germinação , Glucosinolatos , Moringa , Sementes , Tirosina , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Tirosina/metabolismo , Tirosina/análise , Moringa/química , Moringa/metabolismo , Moringa/crescimento & desenvolvimento , Glucosinolatos/metabolismo , Glucosinolatos/análise , Glucosinolatos/química , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732049

RESUMO

In this study, the variability of major glucosinolates in the leaf lamina of 134 Chinese cabbage accessions was investigated using Acquity ultra-performance liquid chromatography (UPLC-ESI-MS/MS). A total of twenty glucosinolates were profiled, of which glucobrassicanapin and gluconapin were identified as the predominant glucosinolates within the germplasm. These two glucosinolates had mean concentration levels above 1000.00 µmol/kg DW. Based on the principal component analysis, accessions IT186728, IT120044, IT221789, IT100417, IT278620, IT221754, and IT344740 were separated from the rest in the score plot. These accessions exhibited a higher content of total glucosinolates. Based on the VIP values, 13 compounds were identified as the most influential and responsible for variation in the germplasm. Sinigrin (r = 0.73), gluconapin (r = 0.78), glucobrassicanapin (r = 0.70), epiprogoitrin (r = 0.73), progoitrin (r = 0.74), and gluconasturtiin (r = 0.67) all exhibited a strong positive correlation with total glucosinolate at p < 0.001. This indicates that each of these compounds had a significant influence on the overall glucosinolate content of the various accessions. This study contributes valuable insights into the metabolic diversity of glucosinolates in Chinese cabbage, providing potential for breeding varieties tailored to consumer preferences and nutritional demands.


Assuntos
Brassica rapa , Glucosinolatos , Espectrometria de Massas em Tandem , Glucosinolatos/análise , Glucosinolatos/metabolismo , Espectrometria de Massas em Tandem/métodos , Brassica rapa/genética , Brassica rapa/química , Brassica rapa/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal
13.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693493

RESUMO

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Assuntos
Acetatos , Glucosinolatos , Glicosídeo Hidrolases , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Regulação da Expressão Gênica de Plantas , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética
15.
Food Chem ; 452: 139565, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759437

RESUMO

Microgreens constitute natural-based foods with health-promoting properties mediated by the accumulation of glucosinolates (GLs) and phenolic compounds (PCs), although their bioaccessibility may limit their nutritional potential. This work subjected eight Brassicaceae microgreens to in vitro gastrointestinal digestion and large intestine fermentation before the metabolomics profiling of PCs and GLs. The application of multivariate statistics effectively discriminated among species and their interaction with in vitro digestion phases. The flavonoids associated with arugula and the aliphatic GLs related to red cabbage and cauliflower were identified as discriminant markers among microgreen species. The multi-omics integration along in vitro digestion and fermentation predicted bioaccessible markers, featuring potential candidates that may eventually be responsible for these functional foods' nutritional properties. This combined analytical and computational framework provided a promising platform to predict the nutritional metabolome-wide outcome of functional food consumption, as in the case of microgreens.


Assuntos
Brassicaceae , Glucosinolatos , Metabolômica , Polifenóis , Glucosinolatos/metabolismo , Glucosinolatos/análise , Glucosinolatos/química , Polifenóis/metabolismo , Polifenóis/química , Polifenóis/análise , Brassicaceae/metabolismo , Brassicaceae/química , Digestão , Humanos , Quimiometria , Extratos Vegetais/metabolismo , Extratos Vegetais/química
16.
Plant Foods Hum Nutr ; 79(2): 359-366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607508

RESUMO

Broccoli is commonly consumed as food and as medicine. However, comprehensive metabolic profiling of two broccoli varieties, Romanesco broccoli (RB) and purple broccoli (PB), in relation to their anticholinergic activity has not been fully disclosed. A total of 110 compounds were tentatively identified using UPLC-Q-TOF-MS metabolomics. Distinctively different metabolomic profiles of the two varieties were revealed by principal component analysis (PCA). Furthermore, by volcano diagram analysis, it was found that PB had a significantly higher content of phenolic acids, flavonoids, and glucosinolates, indicating the different beneficial health potentials of PB that demonstrated higher antioxidant and anticholinergic activities. Moreover, Pearson's correlation analysis revealed 18 metabolites, mainly phenolic and sulfur compounds, as the main bioactive. The binding affinity of these biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes was further validated using molecular docking studies. Results emphasize the broccoli significance as a functional food and nutraceutical source and highlight its beneficial effects against Alzheimer's disease.


Assuntos
Acetilcolinesterase , Brassica , Inibidores da Colinesterase , Metabolômica , Simulação de Acoplamento Molecular , Brassica/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/análise , Flavonoides/análise , Flavonoides/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Cromatografia Líquida , Fenóis/análise , Fenóis/farmacologia , Análise de Componente Principal , Hidroxibenzoatos/análise , Hidroxibenzoatos/farmacologia , Butirilcolinesterase/metabolismo , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas
17.
J Biosci Bioeng ; 138(1): 13-20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614832

RESUMO

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform.


Assuntos
Ácido Edético , Ácido Edético/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Isotiocianatos/metabolismo , Isotiocianatos/química , Metionina/metabolismo , Metionina/análogos & derivados , Metionina/química , Glucosinolatos/metabolismo , Glucosinolatos/biossíntese , Glucosinolatos/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Malatos/metabolismo , Malatos/química , Sequência de Aminoácidos , Modelos Moleculares
18.
Physiol Plant ; 176(2): e14287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606719

RESUMO

Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxigenases , Arabidopsis/metabolismo , Tolerância ao Sal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos
19.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612635

RESUMO

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Assuntos
Adutos de DNA , Glucosinolatos , Camundongos , Humanos , Animais , Ratos , Camundongos Knockout , Cromatografia Líquida , Espectrometria de Massas em Tandem , Arilsulfotransferase/genética
20.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612798

RESUMO

Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic effect. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on thyroid function, in terms of the potential risk for people with thyroid dysfunctions. We analyzed the results of 123 articles of in vitro, animal, and human studies, describing the impact of brassica plants and extracts on thyroid mass and histology, blood levels of TSH, T3, T4, iodine uptake, and the effect on thyroid cancer cells. We also presented the mechanisms of the goitrogenic potential of GLSs and ITCs, the limitations of the studies included, as well as further research directions. The vast majority of the results cast doubt on previous assumptions claiming that brassica plants have antithyroid effects in humans. Instead, they indicate that including brassica vegetables in the daily diet, particularly when accompanied by adequate iodine intake, poses no adverse effects on thyroid function.


Assuntos
Brassica , Bócio , Iodo , Animais , Humanos , Verduras , Isotiocianatos , Glucosinolatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...