Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 39(6): 1484-1492, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34031785

RESUMO

Pancreatic cancer is among the most refractory malignancies with poor prognosis. Thus, preventive approaches, in addition to the development of novel therapeutic strategies are essential for this type of cancer. KRAS mutations occur very early in the development of pancreatic cancers and could be targeted for its prevention, yet specific inhibitors for mutated KRAS are lacking. Accordingly, Glutathione-S Transferase p1 (GSTP1), which we recently found to be an autocrine stimulator of mutated KRAS signaling, is predicted to be an alternative target for chemoprevention of pancreatic cancer. In this study, chemopreventive effects of O-Hexadecyl-γ-glutamyl-S-benzyl-cysteinyl-D-phenyl glycine-Ethylester (HGBPE), which we previously synthesized to inhibit GSTP1 activity, was analyzed for its effect on the prevention of a rat pancreatic carcinogenesis model induced by 7,12-dimethyl-benzanthracene (DMBA). Rats administered with DMBA were grouped into five cohorts. In the treated group I, which was treated neither with HGBPE nor vehicle, sequential appearance of precancerous lesions, ductal complexes, and adenocarcinoma was confirmed as previously reported. We also confirmed in this group that mutations of KRAS and expression of GSTP1 simultaneously occurred in the ductal complex. To rats of groups II and IV, HGBPE was administered, and vehicle to those of group III and V. In groups of II and IV, the incidence of both ductal complex and adenocarcinoma were significantly lower than those in groups III and V. These data clearly suggest the efficacy of HGBP as a potential chemopreventive agent for pancreatic cancer.


Assuntos
Glutationa S-Transferase pi/farmacologia , Neoplasias Pancreáticas/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Modelos Animais de Doenças , Neoplasias Pancreáticas/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
2.
J Med Chem ; 61(5): 1833-1844, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420887

RESUMO

A group of glutathione S-transferase π (GSTπ) activatable O2-(sulfonylethyl derived) diazeniumdiolates 5-12 were designed and synthesized. These compounds could be activated by GSTπ to initiate the ß-elimination reaction, liberating an active vinyl sulfone-based GSH derivative and a diazeniumdiolate anion which subsequently releases NO in situ. The most active compound 6 released relatively high levels of NO and inhibited proliferation of melanoma B16 cells, superior to a diazeniumdiolate-based anticancer agent JS-K (1). Importantly, 6 had 8-fold less inhibitory activity against normal epithelial JB6 Cl 30-7b cells. The inhibitory activity of 6 could be diminished by an NO scavenger or GSTπ inhibitor. Furthermore, 6 induced nitration of mitochondrial tyrosine in B16 cells and inoculated B16 tumors in mice, which might be responsible for oxidation of protein leading to tumor suppression. Finally, 6 significantly retarded the B16 cells growth in a mouse xenograft model. These findings suggest that 6 may have a potential to treat melanoma.


Assuntos
Compostos Azo/farmacologia , Glutationa S-Transferase pi/farmacologia , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos , Compostos Azo/síntese química , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células Epiteliais , Xenoenxertos , Humanos , Melanoma Experimental/patologia , Camundongos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico
4.
Int J Cancer ; 130(5): 1184-94, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21455987

RESUMO

Glutathione-S-transferases (GSTs) are upregulated in malignant gliomas and contribute to their chemoresistance. The nitric oxide (NO) donor PABA/NO (O(2) -{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) generates NO upon selective enzymatic activation by GST-π-inducing selective biological effects in tumors. Tumor cell killing and chemosensitization were observed in a variety of tumors after exposure to GST-activated NO donor drugs. In our project, cytotoxic and chemosensitizing effects of PABA/NO in combination with carboplatin (CPT) and temozolomide (TMZ) were studied in human U87 glioma cells in vitro and in vivo. U87 glioma cells were exposed to PABA/NO alone or in combination with CPT or TMZ for 24 hr. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after 24-hr incubation and 48 hr after drug removal. The antiproliferative effect of PABA/NO was assessed in an intracranial U87 glioma nude rat model comparing subcutaneous administration and intratumoral delivery by convection-enhanced delivery. PABA/NO monotherapy showed a strong dose-dependent growth-inhibitory effect in U87 glioma cells in vitro, and a strong synergistic effect was observed after concomitant treatment with TMZ, but not with CPT. Systemic and intratumoral PABA/NO administration significantly reduced cell proliferation, but this did not result in prolonged survival in nude rats with intracranial U87 gliomas. PABA/NO has potent antiproliferative effects, sensitizes U87 glioma cells to TMZ in vitro and shows some in vivo efficacy. Further studies are still required to consolidate the role of NO donor therapy in glioma treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Azo/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Glutationa S-Transferase pi/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , para-Aminobenzoatos , Ácido 4-Aminobenzoico/administração & dosagem , Ácido 4-Aminobenzoico/uso terapêutico , Animais , Compostos Azo/administração & dosagem , Neoplasias Encefálicas/mortalidade , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Glioma/mortalidade , Inibidores do Crescimento/uso terapêutico , Humanos , Ratos , Ratos Nus , Temozolomida
5.
Mol Immunol ; 46(5): 848-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18962899

RESUMO

We have reported that intracellular glutathione S-transferases P1 (GSTP1) suppresses LPS (lipopolysaccharide)-induced excessive production of pro-inflammatory factors by inhibiting LPS-stimulated MAPKs (mitogen-activated protein kinases) as well as NF-kappaB activation. But under pathogenic circumstances, physiologic levels of GSTP1 are insufficient to stem pro-inflammatory signaling. Here we show that LPS-induced up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW246.7 cells is significantly reduced by incubating cells with recombinant GSTP1 protein. In vivo study demonstrates that treatment of mice (i.p.) with recombinant GSTP1 protein effectively suppresses the devastating effects of acute inflammation, which includes reduction of mortality rate of endotoxic shock, alleviation of LPS-induced acute lung injury and abrogation of thioglycolate (TG)-induced peritoneal deposition of leukocytes and polymorphonuclear cells (PMNs). Meanwhile, GSTP1 prevented LPS-induced TNF-alpha, IL-1beta, MCP-1 and NO production. Further investigation by using confocal microscopy and flow cytometry shows that recombinant GSTP1 protein can be delivered into RAW246.7 cells, mouse peritoneal macrophages and HEK 293 cells suggesting that extracellular GSTP1 protein could be transported across plasma membrane and act as a cytosolic protein. In conclusion our research demonstrates a new finding that increasing cellular GSTP1 level by supplement of recombinant GSTP1 effectively suppresses the devastating effects of acute inflammation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Glutationa S-Transferase pi/farmacologia , Choque Séptico/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Linhagem Celular , Quimiocina CCL2/imunologia , Glutationa S-Transferase pi/imunologia , Humanos , Inflamação/dietoterapia , Inflamação/imunologia , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...