RESUMO
Natural polysaccharides have been investigated as vehicles for oral insulin administration. Because of their non-toxic, renewable, low cost and readily available properties, gums find multiple applications in the pharmaceutical industry. This work aimed to develop a Sterculia striata gum-based formulation associated with additional biopolymers (dextran sulfate, chitosan, and albumin), a crosslinking agent (calcium chloride) and stabilizing agents (polyethylene glycol and poloxamer 188), to increase the oral bioavailability of proteins. Insulin was used as a model drug and the methods used to prepare the formulation were based on ionotropic pregelation followed by electrolytic complexation of oppositely charged biopolymers under controlled pH conditions. The developed formulation was characterized to validate its efficacy, by the determination of its average particle size (622 nm), the insulin encapsulation efficiency (70%), stability in storage for 30 days, and the in vitro mucoadhesion strength (92.46 mN). Additionally, the developed formulation preserved about 64% of initial insulin dose in a simulated gastric medium. This study proposed, for the first time, a Sterculia striata gum-based insulin delivery system with potential for the oral administration of protein drugs, being considered a valid alternative for efficient delivery of those drugs.
Assuntos
Goma de Karaya/química , Preparações Farmacêuticas/química , Proteínas/química , Sterculia/química , Administração Oral , Disponibilidade Biológica , Biopolímeros/química , Cloreto de Cálcio/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Insulina/química , Tamanho da Partícula , Poloxâmero/química , Polietilenoglicóis/químicaRESUMO
Flowers-like ZnO structures were synthesized using Arabic Gum (AGZnO) or Karaya Gum (KGZnO). The AGZnO and KGZnO were characterized by X-ray diffractometry, Fourier Transformed Infrared, Scanning Electron Microscopy, Photoluminescence, nitrogen adsorption/desorption and diffuse reflectance techniques. The materials were tested in the discoloration of Methylene Blue (MB) dye under visible light and scavenger studies were also performed. The toxicity of the MB irradiated was investigated in bioassays with Artemia salina. The structural characterization demonstrated the formation of hexagonal ZnO. All samples presented flower-like morphology with presence of mesopores identified by BET method. The optical properties indicated band gap of 2.99 (AGZnO) and 2.76 eV (KGZnO), and emission in violet, blue and green emissions also were observed. The KGZnO demonstrated better photocatalytic performance than the AGZnO, and scavenger studies indicated that OH radicals are the main species involved in the degradation of the pollutant model. The photodiscoloration of MB solution did not demonstrate toxicity. Therefore, KGZnO is a promising material for photocatalysis application.