Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(4): e1009496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872335

RESUMO

LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules.


Assuntos
Carcinoma Hepatocelular/virologia , DNA Helicases/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Neoplasias Hepáticas/virologia , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/virologia , DNA Helicases/genética , Humanos , Gotículas Lipídicas/virologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Ribonucleoproteínas/genética
2.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568512

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus causing severe diarrhea and high mortality rates in suckling piglets and posing significant economic impact. PEDV replication is completed and results in a large amount of RNA in the cytoplasm. Stress granules (SGs) are dynamic cytosolic RNA granules formed under various stress conditions, including viral infections. Several previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. However, the underlying mechanisms are poorly understood. This study aimed to delineate the molecular mechanisms regulating the SG response to PEDV infection. SG formation is induced early during PEDV infection, but as infection proceeds, this ability is lost and SGs disappear at late stages of infection (>18 h postinfection). PEDV infection resulted in the cleavage of Ras-GTPase-activating protein-binding protein 1 (G3BP1) mediated by caspase-8. Using mutational analysis, the PEDV-induced cleavage site within G3BP1 was identified, which differed from the 3C protease cleavage site previously identified. Furthermore, G3BP1 cleavage by caspase-8 at D168 and D169 was confirmed in vitro as well as in vivo The overexpression of cleavage-resistant G3BP1 conferred persistent SG formation and suppression of viral replication. Additionally, the knockdown of endogenous G3BP1 abolished SG formation and potentiated viral replication. Taken together, these data provide new insights into novel strategies in which PEDV limits the host stress response and antiviral responses and indicate that caspase-8-mediated G3BP1 cleavage is important in the failure of host defense against PEDV infection.IMPORTANCE Coronaviruses (CoVs) are drawing extensive attention again since the outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. CoVs are prone to variation and own the transmission capability by crossing the species barrier resulting in reemergence. How CoVs manipulate the antiviral responses of their hosts needs to be explored. Overall, the study provides new insight into how porcine epidemic diarrhea virus (PEDV) impaired SG assembly by targeting G3BP1 via the host proteinase caspase-8. These findings enhanced the understanding of PEDV infection and might help identify new antiviral targets that could inhibit viral replication and limit the pathogenesis of PEDV.


Assuntos
Caspase 8/metabolismo , Infecções por Coronavirus/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteólise , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Replicação Viral , Animais , Caspase 8/genética , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/virologia , Células HEK293 , Humanos , Proteínas com Motivo de Reconhecimento de RNA/genética , Suínos , Células Vero
3.
PLoS Pathog ; 17(2): e1008690, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635931

RESUMO

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-ß which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication.


Assuntos
COVID-19/virologia , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , COVID-19/metabolismo , Linhagem Celular , Coronavirus/imunologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Replicação Viral/fisiologia
4.
EMBO J ; 39(24): e106478, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33200826

RESUMO

Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA-binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) condenses with RNA via liquid-liquid phase separation (LLPS) and that N protein can be recruited in phase-separated forms of human RNA-binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N-terminal IDR and central-linker IDR, as well as the folded C-terminal oligomerization domain, while the folded N-terminal domain and the C-terminal IDR are not required. N protein phase separation is induced by addition of non-specific RNA. In addition, N partitions in vitro into phase-separated forms of full-length human hnRNPs (TDP-43, FUS, hnRNPA2) and their low-complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS-CoV-2 viral genome packing and in host-protein co-opting necessary for viral replication and infectivity.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/química , SARS-CoV-2/química , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Grânulos Citoplasmáticos/virologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Montagem de Vírus
5.
Front Immunol ; 11: 577838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133097

RESUMO

Stress granules (SGs) are the sites of mRNA storage and related to the regulation of mRNA translation, which are dynamic structures in response to various environmental stresses and viral infections. Seneca Valley virus (SVV), an oncolytic RNA virus belonging to Picornaviridae family, can cause vesicular disease (VD) indistinguished from foot-and-mouth disease (FMD) and other pig VDs. In this study, we found that SVV induced SG formation in the early stage of infection in a PKR-eIF2α dependent manner, as demonstrated by the recruitment of marker proteins of G3BP1 and eIF4GI. Surprisingly, we found that downregulating SG marker proteins TIA1 or G3BP1, or expressing an eIF2α non-phosphorylatable mutant inhibited SG formation, but this inhibition of transient SG formation had no significant effect on SVV propagation. Depletion of G3BP1 significantly attenuated the activation of NF-κB signaling pathway. In addition, we found that SVV inhibited SG formation at the late stage of infection and 3C protease was essential for the inhibition depending on its enzyme activity. Furthermore, we also found that 3C protease blocked the SG formation by disrupting eIF4GI-G3BP1 interaction. Overall, our results demonstrate that SVV induces transient SG formation in an eIF2α phosphorylation and PKR-dependent manner, and that 3C protease inhibits SG formation by interfering eIF4GI-G3BP1 interaction.


Assuntos
Proteases Virais 3C/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Picornaviridae/enzimologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estresse Fisiológico , Proteases Virais 3C/genética , Grânulos Citoplasmáticos/virologia , DNA Helicases/genética , Fator de Iniciação Eucariótico 4G/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Picornaviridae/genética , Picornaviridae/crescimento & desenvolvimento , Proteínas de Ligação a Poli-ADP-Ribose/genética , Ligação Proteica , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Transdução de Sinais , Replicação Viral , eIF-2 Quinase/metabolismo
6.
Viruses ; 12(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899736

RESUMO

Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.


Assuntos
Grânulos Citoplasmáticos/imunologia , Viroses/imunologia , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Grânulos Citoplasmáticos/virologia , Humanos , Viroses/genética , Replicação Viral , Vírus/genética , Vírus/imunologia
7.
Vet Microbiol ; 247: 108786, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768230

RESUMO

Pseudorabies virus (PRV) is one of the most notorious pathogens in the global pig industry. During infection, viruses may evolve various strategies, such as modulating stress granules (SGs) formation, to create an optimal surroundings for viral replication. However, the interplay between PRV infection and SGs formation remains largely unknown. Here we showed that PRV infection markedly blocked SGs formation induced by sodium arsenate (AS) and DL-Dithiothreitol (DTT). Accordantly, the phosphorylation of eIF2α was markedly inhibited in PRV-infected cells, although two eIF2α kinases double-stranded RNA-activated protein kinase (PKR) and PKR-like ER kinase (PERK) were activated during PRV infection. Furthermore, we also found that the dephosphorylation of eIF2α occurred at the early stage of virus infection but without the elevated production of GADD34 and PP1. Moreover, inhibition of PP1 activity by salubrinal could counteract PRV-mediated eIF2α dephosphorylation partially and inhibit virus replication. Our results revealed that, on the one hand, PRV infection activated eIF2α kinases PKR (latter inhibited) and PERK, and on the other hand, PRV encoded-functions dephosphorylated eIF2α and inhibited SGs formation to facilitate virus replication.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Grânulos Citoplasmáticos/virologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Estresse Fisiológico , Animais , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Herpesvirus Suídeo 1 , Fosforilação , Pseudorraiva , Suínos , Replicação Viral , eIF-2 Quinase/metabolismo
8.
Viruses ; 12(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422883

RESUMO

Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.


Assuntos
Infecções por Coronavirus/veterinária , Grânulos Citoplasmáticos/virologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/fisiopatologia , Biossíntese de Proteínas , Células Vero , Replicação Viral
9.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244383

RESUMO

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Assuntos
ADP-Ribosilação/imunologia , Vírus de RNA/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Adenosina Difosfato Ribose/metabolismo , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Humanos , Interferons/imunologia , Mutação , Poli(ADP-Ribose) Polimerases/imunologia , Domínios Proteicos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
10.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941779

RESUMO

Stress granules (SGs) are formed in the cytoplasm under environmental stress, including viral infection. Human enterovirus D68 (EV-D68) is a highly pathogenic virus which can cause serious respiratory and neurological diseases. At present, there is no effective drug or vaccine against EV-D68 infection, and the relationship between EV-D68 infection and SGs is poorly understood. This study revealed the biological function of SGs in EV-D68 infection. Our results suggest that EV-D68 infection induced the accumulation of SG marker proteins Ras GTPase-activated protein-binding protein 1 (G3BP1), T cell intracellular antigen 1 (TIA1), and human antigen R (HUR) in the cytoplasm of infected host cells during early infection but inhibited their accumulation during the late stage. Simultaneously, we revealed that EV-D68 infection induces HUR, TIA1, and G3BP1 colocalization, which marks the formation of typical SGs dependent on protein kinase R (PKR) and eIF2α phosphorylation. In addition, we found that TIA1, HUR, and G3BP1 were capable of targeting the 3' untranslated regions (UTRs) of EV-D68 RNA to inhibit viral replication. However, the formation of SGs in response to arsenite (Ars) gradually decreased as the infection progressed, and G3BP1 was cleaved in the late stage as a strategy to antagonize SGs. Our findings have important implications in understanding the mechanism of interaction between EV-D68 and the host while providing a potential target for the development of antiviral drugs.IMPORTANCE EV-D68 is a serious threat to human health, and there are currently no effective treatments or vaccines. SGs play an important role in cellular innate immunity as a target with antiviral effects. This manuscript describes the formation of SGs induced by EV-D68 early infection but inhibited during the late stage of infection. Moreover, TIA1, HUR, and G3BP1 can chelate a specific site of the 3' UTR of EV-D68 to inhibit viral replication, and this interaction is sequence and complex dependent. However, this inhibition can be antagonized by overexpression of the minireplicon. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets that can inhibit viral replication and limit the pathogenesis of EV-D68.


Assuntos
Regiões 3' não Traduzidas , Grânulos Citoplasmáticos/virologia , Enterovirus Humano D/genética , Replicação Viral , Células A549 , Linhagem Celular Tumoral , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Enterovirus Humano D/fisiologia , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo
11.
Cell Rep ; 29(13): 4496-4508.e4, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875556

RESUMO

Mutations in the FUS gene cause familial amyotrophic lateral sclerosis (ALS-FUS). In ALS-FUS, FUS-positive inclusions are detected in the cytoplasm of neurons and glia, a condition known as FUS proteinopathy. Mutant FUS incorporates into stress granules (SGs) and can spontaneously form cytoplasmic RNA granules in cultured cells. However, it is unclear what can trigger the persistence of mutant FUS assemblies and lead to inclusion formation. Using CRISPR/Cas9 cell lines and patient fibroblasts, we find that the viral mimic dsRNA poly(I:C) or a SG-inducing virus causes the sustained presence of mutant FUS assemblies. These assemblies sequester the autophagy receptor optineurin and nucleocytoplasmic transport factors. Furthermore, an integral component of the antiviral immune response, type I interferon, promotes FUS protein accumulation by increasing FUS mRNA stability. Finally, mutant FUS-expressing cells are hypersensitive to dsRNA toxicity. Our data suggest that the antiviral immune response is a plausible second hit for FUS proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neurônios Motores/imunologia , Proteína FUS de Ligação a RNA/imunologia , Vírus Sinciciais Respiratórios/imunologia , Medula Espinal/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/virologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/imunologia , Corpos de Inclusão/virologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Neurônios Motores/metabolismo , Neurônios Motores/virologia , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroglia/virologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/imunologia , Poli I-C/farmacologia , Cultura Primária de Células , Agregados Proteicos/genética , Agregados Proteicos/imunologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteína FUS de Ligação a RNA/genética , Vírus Sinciciais Respiratórios/patogenicidade , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/virologia
12.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213553

RESUMO

The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.


Assuntos
Infecções por Caliciviridae/imunologia , Grânulos Citoplasmáticos/virologia , DNA Helicases/imunologia , Fator de Iniciação 2 em Eucariotos/imunologia , Evasão da Resposta Imune , Proteínas de Ligação a Poli-ADP-Ribose/imunologia , RNA Helicases/imunologia , Proteínas com Motivo de Reconhecimento de RNA/imunologia , eIF-2 Quinase/imunologia , Animais , Grânulos Citoplasmáticos/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Fosforilação , Biossíntese de Proteínas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
13.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867299

RESUMO

Most viruses have acquired mechanisms to suppress antiviral alpha/beta interferon (IFN-α/ß) and stress responses. Enteroviruses (EVs) actively counteract the induction of IFN-α/ß gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated in the suppression of these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/ß gene expression in infected cells for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-ß induction are suppressed in cells infected with EV-A71, coxsackie B3 virus (CV-B3), CV-A21, and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-ß gene transcription and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite protein kinase R (PKR) activation and α subunit of eukaryotic translation initiation factor 2 phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes its disassembly. Finally, we show that the ability to suppress SG formation and IFN-ß gene transcription is conserved in the 2Apro of EV-A71, CV-A21, and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.IMPORTANCE Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis, and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-ß gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses and thereby is the main enterovirus "security protein." Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Enterovirus Humano A/metabolismo , Peptídeo Hidrolases/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Grânulos Citoplasmáticos/virologia , Vírus da Encefalomiocardite/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/patogenicidade , Enterovirus Humano B/genética , Infecções por Enterovirus/virologia , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Fosforilação , Proteólise , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Proteínas Virais/metabolismo
14.
RNA ; 25(6): 727-736, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30902835

RESUMO

The human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) has two major fates during viral replication: to serve as the template for the major structural and enzymatic proteins, or to be encapsidated and packaged into assembling virions to serve as the genomic vRNA in budding viruses. The dynamic balance between vRNA translation and encapsidation is mediated by numerous host proteins, including Staufen1. During HIV-1 infection, HIV-1 recruits Staufen1 to assemble a distinct ribonucleoprotein complex promoting vRNA encapsidation and viral assembly. Staufen1 also rescues vRNA translation and gene expression during conditions of cellular stress. In this work, we utilized novel Staufen1-/- gene-edited cells to further characterize the contribution of Staufen1 in HIV-1 replication. We observed a marked deficiency in the ability of HIV-1 to dissociate stress granules (SGs) in Staufen1-deficient cells and remarkably, the vRNA repositioned to SGs. These phenotypes were rescued by Staufen1 expression in trans or in cis, but not by a dsRBD-binding mutant, Staufen1F135A. The mistrafficking of the vRNA in these Staufen1-/- cells was also accompanied by a dramatic decrease in viral production and infectivity. This work provides novel insight into the mechanisms by which HIV-1 uses Staufen1 to ensure optimal vRNA translation and trafficking, supporting an integral role for Staufen1 in the HIV-1 life cycle, positioning it as an attractive target for next-generation antiretroviral agents.


Assuntos
Grânulos Citoplasmáticos/virologia , Proteínas do Citoesqueleto/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Vírion/genética , Transporte Biológico , Grânulos Citoplasmáticos/metabolismo , Proteínas do Citoesqueleto/deficiência , Regulação da Expressão Gênica , Células HCT116 , Humanos , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Viral/metabolismo , Transdução de Sinais , Transfecção , Vírion/metabolismo , Montagem de Vírus/genética , Replicação Viral/genética
15.
mBio ; 9(5)2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181255

RESUMO

RNA viruses that replicate in the cell cytoplasm typically concentrate their replication machinery within specialized compartments. This concentration favors enzymatic reactions and shields viral RNA from detection by cytosolic pattern recognition receptors. Nonsegmented negative-strand (NNS) RNA viruses, which include some of the most significant human, animal, and plant pathogens extant, form inclusions that are sites of RNA synthesis and are not circumscribed by a membrane. These inclusions share similarities with cellular protein/RNA structures such as P granules and nucleoli, which are phase-separated liquid compartments. Here we show that replication compartments of vesicular stomatitis virus (VSV) have the properties of liquid-like compartments that form by phase separation. Expression of the individual viral components of the replication machinery in cells demonstrates that the 3 viral proteins required for replication are sufficient to drive cytoplasmic phase separation. Therefore, liquid-liquid phase separation, previously linked to organization of P granules, nucleolus homeostasis, and cell signaling, plays a key role in host-pathogen interactions. This work suggests novel therapeutic approaches to the problem of combating NNS RNA viral infections.IMPORTANCE RNA viruses compartmentalize their replication machinery to evade detection by host pattern recognition receptors and concentrate the machinery of RNA synthesis. For positive-strand RNA viruses, RNA replication occurs in a virus-induced membrane-associated replication organelle. For NNS RNA viruses, the replication compartment is a cytoplasmic inclusion that is not circumscribed by a cellular membrane. Such structures were first observed in the cell bodies of neurons from humans infected with rabies virus and were termed Negri bodies. How the replication machinery that forms this inclusion remains associated in the absence of a membrane has been an enduring mystery. In this article, we present evidence that the VSV replication compartments form through phase separation. Phase separation is increasingly recognized as responsible for cellular structures as diverse as processing bodies (P-bodies) and nucleoli and was recently demonstrated for rabies virus. This article further links the fields of host-pathogen interaction with that of phase separation.


Assuntos
Grânulos Citoplasmáticos/virologia , Interações entre Hospedeiro e Microrganismos , Corpos de Inclusão Viral/fisiologia , Vesiculovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Compartimento Celular , Linhagem Celular , Chlorocebus aethiops , RNA Viral , Células Vero , Proteínas Virais/genética
16.
Virus Res ; 255: 55-67, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006004

RESUMO

Stress granules (SGs) are host translationally silent ribonucleo-proteins formed in cells in response to multiple types of environmental stress, including viral infection. We previously showed that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is recruited to cytoplasm and form the Sam68-positive SGs at 6 hpi, but the Sam68-positive SGs disassembled beyond 12 hpi, suggesting that the SGs might be inhibited during the late stage of Enterovirus 71 (EV71) infection. However, the mechanism and function of this process remains poorly understood. Thus in this study, we demonstrated that EV71 initially induced SGs formation at the early stage of EV71 infection, and confirmed that 2Apro of EV71 was the key viral component that triggered SG formation. In contrast, SGs were diminished as EV71 infection proceeding. At the same time, arsenite-induced SGs were also blocked at the late stage of EV71 infection. This disruption of SGs was caused by viral protease 3Cpro-mediated G3BP1 cleavage. Furthermore, we demonstrated that over-expression of G3BP1-SGs negatively impacted viral replication at the cytopathic effect (CPE), protein, RNA, and viral titer levels. Our novel finding may not only help us to better understand the mechanism how EV71 interacts with the SG response, but also provide mechanistic linkage between cellular stress responses and innate immune activation during EV71 infection.


Assuntos
Cisteína Endopeptidases/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Arsenitos/toxicidade , Cisteína Endopeptidases/genética , Citoplasma/metabolismo , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/virologia , DNA Helicases/genética , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/patologia , Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Proteínas Virais/genética , Replicação Viral
17.
PLoS Pathog ; 14(3): e1006948, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518158

RESUMO

Viral invasion triggers the activation of the host antiviral response. Besides the innate immune response, stress granules (SGs) also act as an additional defense response to combat viral replication. However, many viruses have evolved various strategies to suppress SG formation to facilitate their own replication. Here, we show that viral mRNAs derived from human parainfluenza virus type 3 (HPIV3) infection induce SG formation in an eIF2α phosphorylation- and PKR-dependent manner in which viral mRNAs are sequestered and viral replication is inhibited independent of the interferon signaling pathway. Furthermore, we found that inclusion body (IB) formation by the interaction of the nucleoprotein (N) and phosphoprotein (P) of HPIV3 correlated with SG suppression. In addition, co-expression of P with NL478A (a point mutant of N, which is unable to form IBs with P) or with NΔN10 (lacking N-terminal 10 amino acids of N, which could form IBs with P but was unable to synthesize or shield viral RNAs) failed to inhibit SG formation, suggesting that inhibition of SG formation also correlates with the capacity of IBs to synthesize and shield viral RNAs. Therefore, we provide a model whereby viral IBs escape the antiviral effect of SGs by concealing their own newly synthesized viral RNAs and offer new insights into the emerging role of IBs in viral replication.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral , Vírus da Parainfluenza 3 Humana/fisiologia , RNA Viral/metabolismo , Infecções por Respirovirus/virologia , Replicação Viral , Antivirais , Grânulos Citoplasmáticos/virologia , Células HeLa , Humanos , Imunidade Inata/imunologia , RNA Viral/genética , Infecções por Respirovirus/metabolismo
18.
Mol Cells ; 41(3): 214-223, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29463066

RESUMO

Oligoadenylate synthetase (OAS) protein family is the major interferon (IFN)-stimulated genes responsible for the activation of RNase L pathway upon viral infection. OAS-like (OASL) is also required for inhibition of viral growth in human cells, but the loss of one of its mouse homolog, OASL1, causes a severe defect in termination of type I interferon production. To further investigate the antiviral activity of OASL1, we examined its subcellular localization and regulatory roles in IFN production in the early and late stages of viral infection. We found OASL1, but not OASL2, formed stress granules trapping viral RNAs and promoted efficient RLR signaling in early stages of infection. Stress granule formation was dependent on RNA binding activity of OASL1. But in the late stages of infection, OASL1 interacted with IRF7 transcripts to inhibit translation resulting in down regulation of IFN production. These results implicate that OASL1 plays context dependent functions in the antiviral response for the clearance and resolution of viral infections.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Grânulos Citoplasmáticos/imunologia , RNA Viral/metabolismo , Viroses/imunologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/virologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferons/biossíntese , Interferons/imunologia , Camundongos , Células NIH 3T3 , Transfecção , Viroses/metabolismo
20.
PLoS Pathog ; 13(10): e1006677, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084250

RESUMO

TIA-1 positive stress granules (SG) represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV) overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX) bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT) and protein kinase R (PKR) through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , eIF-2 Quinase/metabolismo , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Grânulos Citoplasmáticos/virologia , Ativação Enzimática/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Herpesvirus Humano 8/genética , Humanos , Poli I-C/farmacologia , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Vírion/genética , Vírion/metabolismo , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...