Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133460

RESUMO

The calcium-/calmodulin dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinases (MAGUK) family of proteins. It fulfils several different cellular functions, ranging from acting as a scaffold protein to transcription control, as well as regulation of receptor sorting. CASK functions depend on the interaction with a variety of partners, for example neurexin, liprin-α, Tbr1 and SAP97. So far, it is uncertain how these seemingly unrelated interactions and resulting functions of CASK are regulated. Here, we show that alternative splicing of CASK can guide the binding affinity of CASK isoforms to distinct interaction partners. We report seven different variants of CASK expressed in the fetal human brain. Four out of these variants are not present in the NCBI GenBank database as known human variants. Functional analyses showed that alternative splicing affected the affinities of CASK variants for several of the tested interaction partners. Thus, we observed a clear correlation of the presence of one splice insert with poor binding of CASK to SAP97, supported by molecular modelling. The alternative splicing and distinct properties of CASK variants in terms of protein-protein interaction should be taken into consideration for future studies.


Assuntos
Encéfalo/metabolismo , Guanilato Quinases/metabolismo , Processamento Alternativo , Encéfalo/embriologia , Proteína 1 Homóloga a Discs-Large/metabolismo , Feminino , Guanilato Quinases/química , Guanilato Quinases/fisiologia , Humanos , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia
2.
Sci Rep ; 10(1): 14014, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814795

RESUMO

Determining the number of synapses that are present in different brain regions is crucial to understand brain connectivity as a whole. Membrane-associated guanylate kinases (MAGUKs) are a family of scaffolding proteins that are expressed in excitatory glutamatergic synapses. We used genetic labeling of two of these proteins (PSD95 and SAP102), and Spinning Disc confocal Microscopy (SDM), to estimate the number of fluorescent puncta in the CA1 area of the hippocampus. We also used FIB-SEM, a three-dimensional electron microscopy technique, to calculate the actual numbers of synapses in the same area. We then estimated the ratio between the three-dimensional densities obtained with FIB-SEM (synapses/µm3) and the bi-dimensional densities obtained with SDM (puncta/100 µm2). Given that it is impractical to use FIB-SEM brain-wide, we used previously available SDM data from other brain regions and we applied this ratio as a conversion factor to estimate the minimum density of synapses in those regions. We found the highest densities of synapses in the isocortex, olfactory areas, hippocampal formation and cortical subplate. Low densities were found in the pallidum, hypothalamus, brainstem and cerebellum. Finally, the striatum and thalamus showed a wide range of synapse densities.


Assuntos
Encéfalo/fisiologia , Proteína 4 Homóloga a Disks-Large/fisiologia , Guanilato Quinases/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/ultraestrutura , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Sinapses/ultraestrutura
3.
Cancer Med ; 9(17): 6377-6386, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681706

RESUMO

Ovarian cancer (OV) is one of the most lethal gynecological malignance in females, and usually diagnosed at advanced stages. Long noncoding RNAs (lncRNAs) exhibit their crucial functions in modulatory mechanisms of cancers. Substantive studies have proven the anti-tumor role of MAGI2-AS3 in multiple cancers, but the physiological functions of MAGI2-AS3 in OV need more detailed explanations. The current study corroborated that overexpression of MAGI2-AS3 executed inhibitory activity in OV via hindering cell proliferation, cell cycle, migration as well as invasion while promoted apoptosis. Moreover MAGI2-AS3 bound with miR-525-5p and negatively regulated the expression of miR-525-5p. Further studies testified that MXD1 was a downstream target of miR-525-5p and the competing relationship between MAGI2-AS3 and MXD1 were confirmed by RNA pull down. Based on the combination between MAX and MYC, we analyzed the effects of MAGI2-AS3 on MXD1 and MYC, unveiling the competing relationship between MXD1 and MYC for binding to MAX. Finally, we constructed rescue assays to certify that MAGI2-AS3 suppressed the course of OV via enhancing MXD1 expression. In summary, MAGI2-AS3 repressed the progression of OV by targeting miR-525-5p/MXD1 axis, offering a novel insight into understanding OV at the molecular level.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Movimento Celular , Proliferação de Células , Guanilato Quinases/fisiologia , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Guanilato Quinases/metabolismo , Humanos , Invasividade Neoplásica , Neoplasias Ovarianas/patologia
4.
Cell Commun Signal ; 18(1): 65, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312269

RESUMO

BACKGROUND: Neuroblastoma (NB) is a childhood neural crest tumor. There are two groups of aggressive NBs, one with MYCN amplification, and another with 11q chromosomal deletion; these chromosomal aberrations are generally mutually exclusive. The DLG2 gene resides in the 11q-deleted region, thus makes it an interesting NB candidate tumor suppressor gene. METHODS: We evaluated the association of DLG2 gene expression in NB with patient outcomes, stage and MYCN status, using online microarray data combining independent NB patient data sets. Functional studies were also conducted using NB cell models and the fruit fly. RESULTS: Using the array data we concluded that higher DLG2 expression was positively correlated to patient survival. We could also see that expression of DLG2 was inversely correlated with MYCN status and tumor stage. Cell proliferation was lowered in both 11q-normal and 11q-deleted NB cells after DLG2 over expression, and increased in 11q-normal NB cells after DLG2 silencing. Higher level of DLG2 increased the percentage of cells in the G2/M phase and decreased the percentage of cells in the G1 phase. We detected increased protein levels of Cyclin A and Cyclin B in fruit fly models either over expressing dMyc or with RNAi-silenced dmDLG, indicating that both events resulted in enhanced cell cycling. Induced MYCN expression in NB cells lowered DLG2 gene expression, which was confirmed in the fly; when dMyc was over expressed, the dmDLG protein level was lowered, indicating a link between Myc over expression and low dmDLG level. CONCLUSION: We conclude that low DLG2 expression level forces cell cycle progression, and that it predicts poor NB patient survival. The low DLG2 expression level could be caused by either MYCN-amplification or 11q-deletion. Video Abstract.


Assuntos
Guanilato Quinases , Neuroblastoma/genética , Proteínas Supressoras de Tumor , Animais , Ciclo Celular , Linhagem Celular Tumoral , Deleção Cromossômica , Conjuntos de Dados como Assunto , Drosophila melanogaster , Regulação Neoplásica da Expressão Gênica , Guanilato Quinases/genética , Guanilato Quinases/fisiologia , Humanos , Estadiamento de Neoplasias , Neuroblastoma/terapia , Taxa de Sobrevida , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
5.
Mol Autism ; 11(1): 19, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164788

RESUMO

BACKGROUND: DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. METHODS: Mice lacking exon 14 of the Dlg2 gene (Dlg2-/- mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. RESULTS: Dlg2-/- mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2-/- mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2-/- dorsolateral striatum was significantly reduced. CONCLUSION: These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.


Assuntos
Corpo Estriado/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Comportamento Social , Animais , Transtorno do Espectro Autista , Comportamento Animal , Potenciais Pós-Sinápticos Excitadores , Guanilato Quinases/genética , Potenciais Pós-Sinápticos Inibidores , Masculino , Proteínas de Membrana/genética , Camundongos Transgênicos , Transmissão Sináptica
6.
Adv Exp Med Biol ; 1190: 181-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31760645

RESUMO

Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G-membrane protein palmitoylated 6 (MPP6)-cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.


Assuntos
Bainha de Mielina/fisiologia , Sistema Nervoso Periférico/fisiologia , Células de Schwann/fisiologia , Animais , Axônios , Moléculas de Adesão Celular/fisiologia , Guanilato Quinases/fisiologia , Proteínas Ligadas a Lipídeos/fisiologia , Proteínas de Membrana , Camundongos , Proteínas dos Microfilamentos/fisiologia , Bainha de Mielina/ultraestrutura , Transdução de Sinais
7.
Exp Mol Pathol ; 110: 104286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323190

RESUMO

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Mutação com Ganho de Função , Genes Modificadores , Guanilato Ciclase/genética , Guanilato Quinases/fisiologia , Inflamação/genética , Proteínas de Membrana/genética , Psoríase/genética , Dermatopatias/genética , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Psoríase/patologia , Índice de Gravidade de Doença , Dermatopatias/patologia , Transcriptoma
8.
Cells ; 8(5)2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035633

RESUMO

Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an adaptor protein that stabilizes epithelial and endothelial cell-cell contacts. The aim of this study was to assess the unknown role of endothelial cell MAGI1 in response to fluid shear stress. We show constitutive expression and co-localization of MAGI1 with vascular endothelial cadherin (VE-cadherin) in endothelial cells at cellular junctions under static and laminar flow conditions. Fluid shear stress increases MAGI1 expression. MAGI1 silencing perturbed flow-dependent responses, specifically, Krüppel-like factor 4 (KLF4) expression, endothelial cell alignment, eNOS phosphorylation and NO production. MAGI1 overexpression had opposite effects and induced phosphorylation of PKA, AMPK, and CAMKII. Pharmacological inhibition of PKA and AMPK prevented MAGI1-mediated eNOS phosphorylation. Consistently, MAGI1 silencing and PKA inhibition suppressed the flow-induced NO production. Endothelial cell-specific transgenic expression of MAGI1 induced PKA and eNOS phosphorylation in vivo and increased NO production ex vivo in isolated endothelial cells. In conclusion, we have identified endothelial cell MAGI1 as a previously unrecognized mediator of fluid shear stress-induced and PKA/AMPK dependent eNOS activation and NO production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Moléculas de Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Guanilato Quinases/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Transgênicos , Transdução de Sinais
9.
FASEB J ; 33(6): 7315-7330, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860870

RESUMO

Voltage-dependent sodium (NaV) 1.8 channels regulate action potential generation in nociceptive neurons, identifying them as putative analgesic targets. Here, we show that NaV1.8 channel plasma membrane localization, retention, and stability occur through a direct interaction with the postsynaptic density-95/discs large/zonula occludens-1-and WW domain-containing scaffold protein called membrane-associated guanylate kinase with inverted orientation (Magi)-1. The neurophysiological roles of Magi-1 are largely unknown, but we found that dorsal root ganglion (DRG)-specific knockdown of Magi-1 attenuated thermal nociception and acute inflammatory pain and produced deficits in NaV1.8 protein expression. A competing cell-penetrating peptide mimetic derived from the NaV1.8 WW binding motif decreased sodium currents, reduced NaV1.8 protein expression, and produced hypoexcitability. Remarkably, a phosphorylated variant of the very same peptide caused an opposing increase in NaV1.8 surface expression and repetitive firing. Likewise, in vivo, the peptides produced diverging effects on nocifensive behavior. Additionally, we found that Magi-1 bound to sequence like a calcium-activated potassium channel sodium-activated (Slack) potassium channels, demonstrating macrocomplexing with NaV1.8 channels. Taken together, these findings emphasize Magi-1 as an essential scaffold for ion transport in DRG neurons and a central player in pain.-Pryce, K. D., Powell, R., Agwa, D., Evely, K. M., Sheehan, G. D., Nip, A., Tomasello, D. L., Gururaj, S., Bhattacharjee, A. Magi-1 scaffolds NaV1.8 and Slack KNa channels in dorsal root ganglion neurons regulating excitability and pain.


Assuntos
Gânglios Espinais/citologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Nociceptividade/fisiologia , Canais de Potássio Ativados por Sódio/fisiologia , Células Receptoras Sensoriais/fisiologia , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Células Cultivadas , Feminino , Guanilato Quinases/antagonistas & inibidores , Guanilato Quinases/genética , Injeções , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Domínios PDZ , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Nós Neurofibrosos/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nervos Espinhais
10.
Mol Psychiatry ; 24(7): 1079-1092, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30610199

RESUMO

Calcium/calmodulin-dependent serine protein kinase (CASK) is a membrane-associated guanylate kinase (MAGUK) protein that is associated with neurodevelopmental disorders. CASK is thought to have both pre- and postsynaptic functions, but the mechanism and consequences of its functions in the brain have yet to be elucidated, because homozygous CASK-knockout (CASK-KO) mice die before brain maturation. Taking advantage of the X-chromosome inactivation (XCI) mechanism, here we examined the synaptic functions of CASK-KO neurons in acute brain slices of heterozygous CASK-KO female mice. We also analyzed CASK-knockdown (KD) neurons in acute brain slices generated by in utero electroporation. Both CASK-KO and CASK-KD neurons showed a disruption of the excitatory and inhibitory (E/I) balance. We further found that the expression level of the N-methyl-D-aspartate receptor subunit GluN2B was decreased in CASK-KD neurons and that overexpressing GluN2B rescued the disrupted E/I balance in CASK-KD neurons. These results suggest that the down-regulation of GluN2B may be involved in the mechanism of the disruption of synaptic E/I balance in CASK-deficient neurons.


Assuntos
Guanilato Quinases/deficiência , Guanilato Quinases/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Feminino , Guanilato Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
11.
Cereb Cortex ; 29(3): 963-977, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415226

RESUMO

Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive ß1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.


Assuntos
Moléculas de Adesão Celular/fisiologia , Espinhas Dendríticas/fisiologia , Lobo Frontal/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células Piramidais/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Guanilato Quinases/fisiologia , Camundongos Transgênicos , Modelos Moleculares , Transdução de Sinais
12.
PLoS Biol ; 16(12): e2006838, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586380

RESUMO

The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.


Assuntos
Proteína 4 Homóloga a Disks-Large/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Sinapses/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Feminino , Ácido Glutâmico/metabolismo , Guanilato Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Transmissão Sináptica/fisiologia , Córtex Visual/metabolismo
13.
Handb Exp Pharmacol ; 246: 73-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28965170

RESUMO

Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Conexina 43/fisiologia , Proteína 1 Homóloga a Discs-Large , Guanilato Quinases/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/química , Placofilinas/fisiologia
14.
J Physiol ; 595(5): 1699-1709, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27861918

RESUMO

KEY POINTS: The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins anchor glutamate receptors at CNS synapses. MAGUK removal via RNAi-mediated knockdown in the CA1 hippocampal region in immature animals causes rapid and lasting reductions in glutamatergic transmission. In mature animals, the same manipulation has little acute effect. The hippocampal dentate gyrus, a region with ongoing adult neurogenesis, is sensitive to MAGUK loss in mature animals, behaving like an immature CA1. Over long time courses, removal of MAGUKs in CA1 causes reductions in glutamatergic transmission, indicating that synapses in mature animals require MAGUKs for anchoring glutamate receptors, but are much more stable. These results demonstrate regional and developmental control of synapse stability and suggest the existence of a sensitive period of heightened hippocampal plasticity in CA1 of pre-adolescent rodents, and in dentate gyrus throughout maturity. ABSTRACT: Fast excitatory transmission in the brain requires localization of glutamate receptors to synapses. The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins is critical for localization of glutamate receptors to synapses. Although the MAGUKs are well-studied in reduced preparations and young animals, few data exist on their role in adult animals. Here, we present a detailed developmental study of the role of the MAGUKs during rat development. We first confirmed by knockdown experiments that MAGUKs are essential for glutamatergic transmission in young animals and cultured slices, and an increase in postsynaptic density protein 95 (PSD-95) by overexpression caused correlated increases in glutamatergic transmission. We found that CA1 synapses in adults, in contrast, were largely unaffected by overexpression of MAGUKs, and although adult CA1 synapses required MAGUKs to the same degree as synapses in young animals, this was only apparent over long time scales of knockdown. We additionally showed that overexpression of MAGUKs is likely to function to accelerate the developmental strengthening of excitatory transmission. Finally, we showed that adult dentate gyrus appears similar to immature CA1, demonstrating regional and developmental control of MAGUK dynamics. Together, these results demonstrate a period of juvenile instability at CA1 synapses, followed by a period of adult stability in which synapses are acutely unaffected by changes in MAGUK abundance.


Assuntos
Região CA1 Hipocampal/fisiologia , Giro Denteado/fisiologia , Guanilato Quinases/fisiologia , Sinapses/fisiologia , Animais , Guanilato Quinases/genética , Células HEK293 , Humanos , MicroRNAs/genética , Ratos , Receptores de AMPA/fisiologia
15.
eNeuro ; 2(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665164

RESUMO

Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Guanilato Quinases/análise , Guanilato Quinases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/análise , Sinapses/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(24): E3131-40, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26015564

RESUMO

During critical periods, all cortical neural circuits are refined to optimize their functional properties. The prevailing notion is that the balance between excitation and inhibition determines the onset and closure of critical periods. In contrast, we show that maturation of silent glutamatergic synapses onto principal neurons was sufficient to govern the duration of the critical period for ocular dominance plasticity in the visual cortex of mice. Specifically, postsynaptic density protein-95 (PSD-95) was absolutely required for experience-dependent maturation of silent synapses, and its absence before the onset of critical periods resulted in lifelong juvenile ocular dominance plasticity. Loss of PSD-95 in the visual cortex after the closure of the critical period reinstated silent synapses, resulting in reopening of juvenile-like ocular dominance plasticity. Additionally, silent synapse-based ocular dominance plasticity was largely independent of the inhibitory tone, whose developmental maturation was independent of PSD-95. Moreover, glutamatergic synaptic transmission onto parvalbumin-positive interneurons was unaltered in PSD-95 KO mice. These findings reveal not only that PSD-95-dependent silent synapse maturation in visual cortical principal neurons terminates the critical period for ocular dominance plasticity but also indicate that, in general, once silent synapses are consolidated in any neural circuit, initial experience-dependent functional optimization and critical periods end.


Assuntos
Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Sinapses/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Proteína 4 Homóloga a Disks-Large , Dominância Ocular/fisiologia , Feminino , Glutamina/fisiologia , Guanilato Quinases/deficiência , Guanilato Quinases/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia
17.
Int J Food Microbiol ; 213: 110-7, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25987542

RESUMO

Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.


Assuntos
Adaptação Fisiológica/genética , Bacillus cereus/enzimologia , Ácidos Graxos/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Guanilato Quinases/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Bacillus cereus/genética , Temperatura Baixa , Meios de Cultura/química , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Guanilato Quinases/genética , Humanos , Fosfolipídeos/metabolismo , Receptores de Detecção de Cálcio/genética
18.
Nat Neurosci ; 18(2): 239-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581363

RESUMO

Neddylation is a ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. However, its role in neurons, nonreplicating postmitotic cells, remains unexplored. Here we report that Nedd8 conjugation increased during postnatal brain development and is active in mature synapses, where many proteins are neddylated. We show that neddylation controls spine development during neuronal maturation and spine stability in mature neurons. We found that neddylated PSD-95 was present in spines and that neddylation on Lys202 of PSD-95 is required for the proactive role of the scaffolding protein in spine maturation and synaptic transmission. Finally, we developed Nae1(CamKIIα-CreERT2) mice, in which neddylation is conditionally ablated in adult excitatory forebrain neurons. These mice showed synaptic loss, impaired neurotransmission and severe cognitive deficits. In summary, our results establish neddylation as an active post-translational modification in the synapse regulating the maturation, stability and function of dendritic spines.


Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ubiquitinas/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína NEDD8 , Ratos , Ratos Sprague-Dawley , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/fisiologia , Ubiquitinas/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...