Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.054
Filtrar
1.
Viruses ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38932164

RESUMO

The HIV-1 nucleocapsid protein (NC) is a multifunctional viral protein necessary for HIV-1 replication. Recent studies have demonstrated that reverse transcription (RT) completes in the intact viral capsid, and the timing of RT and uncoating are correlated. How the small viral core stably contains the ~10 kbp double stranded (ds) DNA product of RT, and the role of NC in this process, are not well understood. We showed previously that NC binds and saturates dsDNA in a non-specific electrostatic binding mode that triggers uniform DNA self-attraction, condensing dsDNA into a tight globule against extending forces up to 10 pN. In this study, we use optical tweezers and atomic force microscopy to characterize the role of NC's basic residues in dsDNA condensation. Basic residue mutations of NC lead to defective interaction with the dsDNA substrate, with the constant force plateau condensation observed with wild-type (WT) NC missing or diminished. These results suggest that NC's high positive charge is essential to its dsDNA condensing activity, and electrostatic interactions involving NC's basic residues are responsible in large part for the conformation, size, and stability of the dsDNA-protein complex inside the viral core. We observe DNA re-solubilization and charge reversal in the presence of excess NC, consistent with the electrostatic nature of NC-induced DNA condensation. Previous studies of HIV-1 replication in the presence of the same cationic residue mutations in NC showed significant defects in both single- and multiple-round viral infectivity. Although NC participates in many stages of viral replication, our results are consistent with the hypothesis that cationic residue mutations inhibit genomic DNA condensation, resulting in increased premature capsid uncoating and contributing to viral replication defects.


Assuntos
DNA Viral , HIV-1 , Transcrição Reversa , HIV-1/genética , HIV-1/fisiologia , HIV-1/química , HIV-1/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Humanos , Cátions/metabolismo , Replicação Viral , Microscopia de Força Atômica , Vírion/metabolismo , Vírion/genética , Vírion/química , Mutação
2.
Viruses ; 16(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38932195

RESUMO

Antiretroviral treatments have notably extended the lives of individuals with HIV and reduced the occurrence of comorbidities, including ocular manifestations. The involvement of endoplasmic reticulum (ER) stress in HIV-1 pathogenesis raises questions about its correlation with cellular senescence or its role in initiating senescent traits. This study investigated how ER stress and dysregulated autophagy impact cellular senescence triggered by HIV-1 Tat in the MIO-M1 cell line (human Müller glial cells). Cells exposed to HIV-1 Tat exhibited increased vimentin expression combined with markers of ER stress (BiP, p-eIF2α), autophagy (LC3, Beclin-1, p62), and the senescence marker p21 compared to control cells. Western blotting and staining techniques like SA-ß-gal were employed to examine these markers. Additionally, treatments with ER stress inhibitor 4-PBA before HIV-1 Tat exposure led to a decreased expression of ER stress, senescence, and autophagy markers. Conversely, pre-treatment with the autophagy inhibitor 3-MA resulted in reduced autophagy and senescence markers but did not alter ER stress markers compared to control cells. The findings suggest a link between ER stress, dysregulated autophagy, and the initiation of a senescence phenotype in MIO-M1 cells induced by HIV-1 Tat exposure.


Assuntos
Autofagia , Senescência Celular , Estresse do Retículo Endoplasmático , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , HIV-1/fisiologia , Linhagem Celular , Células Ependimogliais/metabolismo , Células Ependimogliais/virologia , Infecções por HIV/virologia
3.
Viruses ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38932227

RESUMO

The HIV envelope glycoprotein (Env) is a trimeric protein that facilitates viral binding and fusion with target cells. As the sole viral protein on the HIV surface, Env is important both for immune responses to HIV and in vaccine designs. Targeting Env in clinical applications is challenging due to its heavy glycosylation, high genetic variability, conformational camouflage, and its low abundance on virions. Thus, there is a critical need to better understand this protein. Flow virometry (FV) is a useful methodology for phenotyping the virion surface in a high-throughput, single virion manner. To demonstrate the utility of FV to characterize Env, we stained HIV virions with a panel of 85 monoclonal antibodies targeting different regions of Env. A broad range of antibodies yielded robust staining of Env, with V3 antibodies showing the highest quantitative staining. A subset of antibodies tested in parallel on viruses produced in CD4+ T cell lines, HEK293T cells, and primary cells showed that the cellular model of virus production can impact Env detection. Finally, in addition to being able to highlight Env heterogeneity on virions, we show FV can sensitively detect differences in Env conformation when soluble CD4 is added to virions before staining.


Assuntos
HIV-1 , Vírion , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/imunologia , Vírion/metabolismo , Células HEK293 , Anticorpos Anti-HIV/imunologia , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia
4.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932230

RESUMO

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Replicação Viral , HIV-1/genética , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Regulação Viral da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Viruses ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932267

RESUMO

Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.


Assuntos
Carcinogênese , Genômica , HIV-1 , Vírus da Hepatite B , Sequenciamento de Nucleotídeos em Larga Escala , Integração Viral , Fluxo de Trabalho , Humanos , Integração Viral/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , HIV-1/genética , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Carcinogênese/genética , Genômica/métodos , Linhagem Celular Tumoral , Papillomaviridae/genética
6.
Retrovirology ; 21(1): 12, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886829

RESUMO

An essential regulatory hub for retroviral replication events, the 5' untranslated region (UTR) encodes an ensemble of cis-acting replication elements that overlap in a logical manner to carry out divergent RNA activities in cells and in virions. The primer binding site (PBS) and primer activation sequence initiate the reverse transcription process in virions, yet overlap with structural elements that regulate expression of the complex viral proteome. PBS-segment also encompasses the attachment site for Integrase to cut and paste the 3' long terminal repeat into the host chromosome to form the provirus and purine residues necessary to execute the precise stoichiometry of genome-length transcripts and spliced viral RNAs. Recent genetic mapping, cofactor affinity experiments, NMR and SAXS have elucidated that the HIV-1 PBS-segment folds into a three-way junction structure. The three-way junction structure is recognized by the host's nuclear RNA helicase A/DHX9 (RHA). RHA tethers host trimethyl guanosine synthase 1 to the Rev/Rev responsive element (RRE)-containing RNAs for m7-guanosine Cap hyper methylation that bolsters virion infectivity significantly. The HIV-1 trimethylated (TMG) Cap licenses specialized translation of virion proteins under conditions that repress translation of the regulatory proteins. Clearly host-adaption and RNA shapeshifting comprise the fundamental basis for PBS-segment orchestrating both reverse transcription of virion RNA and the nuclear modification of m7G-Cap for biphasic translation of the complex viral proteome. These recent observations, which have exposed even greater complexity of retroviral RNA biology than previously established, are the impetus for this article. Basic research to fully comprehend the marriage of PBS-segment structures and host RNA binding proteins that carry out retroviral early and late replication events is likely to expose an immutable virus-specific therapeutic target to attenuate retrovirus proliferation.


Assuntos
Regiões 5' não Traduzidas , HIV-1 , RNA Viral , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo , Humanos , HIV-1/fisiologia , HIV-1/genética , Sítios de Ligação , Regulação Viral da Expressão Gênica , Transcrição Reversa , Retroviridae/fisiologia , Retroviridae/genética
7.
Front Immunol ; 15: 1374301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835765

RESUMO

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Assuntos
HIV-1 , Camundongos Transgênicos , Monoacilglicerol Lipases , Doenças Neuroinflamatórias , Animais , Camundongos , HIV-1/fisiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Feminino , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/tratamento farmacológico , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Complexo AIDS Demência/tratamento farmacológico
8.
PLoS Comput Biol ; 20(6): e1012129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848426

RESUMO

Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.


Assuntos
Morte Celular , Infecções por HIV , Modelos Biológicos , Infecções por HIV/virologia , Infecções por HIV/fisiopatologia , Humanos , Morte Celular/fisiologia , HIV-1/fisiologia , HIV-1/patogenicidade , Biologia Computacional , Carga Viral , Masculino , Adulto , Doença Aguda , Feminino
9.
PLoS Pathog ; 20(6): e1012281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848441

RESUMO

Understanding the mechanisms that drive HIV expression and latency is a key goal for achieving an HIV cure. Here we investigate the role of the SETD2 histone methyltransferase, which deposits H3K36 trimethylation (H3K36me3), in HIV infection. We show that prevention of H3K36me3 by a potent and selective inhibitor of SETD2 (EPZ-719) leads to reduced post-integration viral gene expression and accelerated emergence of latently infected cells. CRISPR/Cas9-mediated knockout of SETD2 in primary CD4 T cells confirmed the role of SETD2 in HIV expression. Transcriptomic profiling of EPZ-719-exposed HIV-infected cells identified numerous pathways impacted by EPZ-719. Notably, depletion of H3K36me3 prior to infection did not prevent HIV integration but resulted in a shift of integration sites from highly transcribed genes to quiescent chromatin regions and to polycomb repressed regions. We also observed that SETD2 inhibition did not apparently affect HIV RNA levels, indicating a post-transcriptional mechanism affecting HIV expression. Viral RNA splicing was modestly reduced in the presence of EPZ-719. Intriguingly, EPZ-719 exposure enhanced responsiveness of latent HIV to the HDAC inhibitor vorinostat, suggesting that H3K36me3 can contribute to a repressive chromatin state at the HIV locus. These results identify SETD2 and H3K36me3 as novel regulators of HIV integration, expression and latency.


Assuntos
Infecções por HIV , HIV-1 , Histona-Lisina N-Metiltransferase , Latência Viral , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Latência Viral/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/genética , HIV-1/fisiologia , HIV-1/genética , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Regulação Viral da Expressão Gênica
10.
Artigo em Inglês | MEDLINE | ID: mdl-38902848

RESUMO

Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.


Assuntos
Linfócitos T CD4-Positivos , Fator de Transcrição GATA3 , HIV-1 , Análise de Célula Única , Ativação Viral , Latência Viral , Latência Viral/genética , Humanos , Ativação Viral/genética , Análise de Célula Única/métodos , HIV-1/genética , HIV-1/fisiologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transcriptoma/genética , Regulação Viral da Expressão Gênica
11.
Retrovirology ; 21(1): 13, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898526

RESUMO

Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.


Assuntos
Produtos do Gene gag , HIV-1 , Humanos , HIV-1/fisiologia , HIV-1/genética , Produtos do Gene gag/metabolismo , Produtos do Gene gag/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Vírus do Sarcoma de Rous/fisiologia , Vírus do Sarcoma de Rous/genética , Proteômica , Interações Hospedeiro-Patógeno , Replicação Viral , Interações entre Hospedeiro e Microrganismos , Espectrometria de Massas
12.
Nat Commun ; 15(1): 5290, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906865

RESUMO

Long-term non-progressors (LTNPs) of HIV-1 infection may provide important insights into mechanisms involved in viral control and pathogenesis. Here, our results suggest that the ribosomal protein lateral stalk subunit P1 (RPLP1) is expressed at higher levels in LTNPs compared to regular progressors (RPs). Functionally, RPLP1 inhibits transcription of clade B HIV-1 strains by occupying the C/EBPß binding sites in the viral long terminal repeat (LTR). This interaction requires the α-helixes 2 and 4 domains of RPLP1 and is evaded by HIV-1 group M subtype C and group N, O and P strains that do not require C/EBPß for transcription. We further demonstrate that HIV-1-induced translocation of RPLP1 from the cytoplasm to the nucleus is essential for antiviral activity. Finally, knock-down of RPLP1 promotes reactivation of latent HIV-1 proviruses. Thus, RPLP1 may play a role in the maintenance of HIV-1 latency and resistance to RPLP1 restriction may contribute to the effective spread of clade C HIV-1 strains.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Infecções por HIV , Repetição Terminal Longa de HIV , HIV-1 , Proteínas Ribossômicas , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Repetição Terminal Longa de HIV/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/genética , Transcrição Gênica , Ligação Proteica , Latência Viral/genética , Sítios de Ligação , Regulação Viral da Expressão Gênica , Células HEK293 , Núcleo Celular/metabolismo
13.
BMC Res Notes ; 17(1): 153, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835056

RESUMO

OBJECTIVE: Fourth-generation HIV Ag/Ab Combo assay is used for HIV screening of blood for transfusion in developing countries, however, the sensitivity of the assay is questionable during the acute phase of HIV infection. Thus, the study aimed to determine the effect of combining centrifugation with HIV-1 virion lysis on the sensitivity of the fourth-generation HIV Ag/Ab combo assay. RESULTS: When the 50 HIV-1 antibody-negative samples were run on the fourth-generation HIV Ag/Ab combo assay, 8 (16%) were positive following centrifugation, 13 (26%) were positive following lysis while 25 (50%) were positive after combining centrifugation with HIV-1 virion lysis.


Assuntos
Centrifugação , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Sensibilidade e Especificidade , Vírion , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Centrifugação/métodos , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/sangue , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Vírion/isolamento & purificação , Vírion/imunologia , Antígenos HIV/imunologia , Antígenos HIV/sangue
14.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928103

RESUMO

The maturation of HIV-1 virions is a crucial process in viral replication. Although T-cells are a primary source of virus production, much of our understanding of virion maturation comes from studies using the HEK293T human embryonic kidney cell line. Notably, there is a lack of comparative analyses between T-cells and HEK293T cells in terms of virion maturation efficiency in existing literature. We previously developed an advanced virion visualization system based on the FRET principle, enabling the effective distinction between immature and mature virions via fluorescence microscopy. In this study, we utilized pseudotyped, single-round infectious viruses tagged with FRET labels (HIV-1 Gag-iFRET∆Env) derived from Jurkat (a human T-lymphocyte cell line) and HEK293T cells to evaluate their virion maturation rates. HEK293T-derived virions demonstrated a maturity rate of 81.79%, consistent with other studies and our previous findings. However, virions originating from Jurkat cells demonstrated a significantly reduced maturation rate of 68.67% (p < 0.0001). Correspondingly, viruses produced from Jurkat cells exhibited significantly reduced infectivity compared to those derived from HEK293T cells, with the relative infectivity measured at 65.3%. This finding is consistent with the observed relative maturation rate of viruses produced by Jurkat cells. These findings suggest that initiation of virion maturation directly correlates with viral infectivity. Our observation highlights the dynamic nature of virus-host interactions and their implications for virion production and infectivity.


Assuntos
Transferência Ressonante de Energia de Fluorescência , HIV-1 , Vírion , Humanos , HIV-1/fisiologia , HIV-1/patogenicidade , Células HEK293 , Vírion/metabolismo , Células Jurkat , Transferência Ressonante de Energia de Fluorescência/métodos , Replicação Viral , Montagem de Vírus , Infecções por HIV/virologia
15.
Curr Opin HIV AIDS ; 19(4): 179-186, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747727

RESUMO

PURPOSE OF REVIEW: HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective prophylactic vaccine. Combination antiretroviral therapy (ART) suppresses HIV replication, but latent viral reservoirs allow the virus to persist and reignite active replication if ART is discontinued. Moreover, inflammation and immune disfunction persist despite ART-mediated suppression of HIV. Immune checkpoint molecules facilitate immune dysregulation and viral persistence. However, their therapeutic modulation may offer an avenue to enhance viral immune control for patients living with HIV-1 (PLWH). RECENT FINDINGS: The success of immune checkpoint inhibitor (ICI) therapy in oncology suggests that targeting these same immune pathways might be an effective therapeutic approach for treating PLWH. Several ICIs have been evaluated for their ability to reinvigorate exhausted T cells, and possibly reverse HIV latency, in both preclinical and clinical HIV-1 studies. SUMMARY: Although there are very encouraging findings showing enhanced CD8 + T-cell function with ICI therapy in HIV infection, it remains uncertain whether ICIs alone could demonstrably impact the HIV reservoir. Moreover, safety concerns and significant clinical adverse events present a hurdle to the development of ICI approaches. This review provides an update on the current knowledge regarding the development of ICIs for the remission of HIV-1 in PWH. We detail recent findings from simian immunodeficiency virus (SIV)-infected rhesus macaque models, clinical trials in PLWH, and the role of soluble immune checkpoint molecules in HIV pathogenesis.


Assuntos
Infecções por HIV , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Animais , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , HIV-1/imunologia
16.
Med Sci (Paris) ; 40(5): 421-427, 2024 May.
Artigo em Francês | MEDLINE | ID: mdl-38819277

RESUMO

The genomic RNA of HIV-1 is modified by epitranscriptomic modifications, including 2'-O-methylations, which are found on 17 internal positions. These methylations are added by the cellular methyltransferase FTSJ3, and have pro-viral effects, since they shield the viral genome from the detection by the innate immune sensor MDA5. In turn, the production of interferons by infected cells is reduced, limiting the expression of interferon-stimulated genes (ISGs) with antiviral activities. Moreover, 2'-O-methylations protect the HIV-1 genome from its degradation by ISG20, an interferon-induced exonuclease. Conversely, these methylations also exhibit antiviral effects, as they impede reverse-transcription in vitro or in quiescent cells, which are known to contain low nucleotide concentrations. Altogether, these observations suggest a balance between the proviral effect of 2'-O-methylations, related to the protection of the viral genome from detection by MDA5 and degradation by ISG20, and the antiviral effect, associated with the negative impact of 2'-O-methylations on the viral replication. These findings pave the way for further optimization of therapeutic RNA, by selective methylation of specific nucleotides.


Title: Effets de la 2'-O-méthylation de l'ARN génomique du VIH-1 sur la réplication virale. Abstract: Les ARN du virus de l'immunodéficience humaine sont décorés par des marques épitranscriptomiques, dont des 2'-O-méthylations internes. Ces marques ajoutées par une enzyme cellulaire, FTSJ3, sont des marqueurs du « soi ¼. Elles ont des effets proviraux en protégeant l'ARN viral de la détection par le senseur de l'immunité innée MDA5, et en limitant sa dégradation par l'exonucléase cellulaire ISG20, induite par l'interféron. Ces méthylations ont également un effet antiviral, dans la mesure où elles perturbent la rétrotranscription du génome ARN du virus, in vitro et dans des cellules quiescentes. Un équilibre subtil existe donc entre les effets proviraux et antiviraux des 2'-O-méthylations, assurant ainsi une réplication optimale du virus. Ces découvertes ouvrent des perspectives d'optimisation des ARN thérapeutiques à effet antiviral, par la méthylation sélective de certains nucléotides.


Assuntos
Genoma Viral , HIV-1 , Replicação Viral , Humanos , HIV-1/fisiologia , HIV-1/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Genoma Viral/fisiologia , Metilação , Infecções por HIV/virologia , Infecções por HIV/genética , RNA Viral/genética , RNA Viral/metabolismo
17.
Epidemics ; 47: 100770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761432

RESUMO

In the context of infectious diseases, the dynamic interplay between ever-changing host populations and viral biology demands a more flexible modeling approach than common fixed correlations. Embracing random-effects regression models allows for a nuanced understanding of the intricate ecological and evolutionary dynamics underlying complex phenomena, offering valuable insights into disease progression and transmission patterns. In this article, we employed a random-effects regression to model an observed decreasing median plasma viral load (pVL) among individuals with HIV in Mexico City during 2019-2021. We identified how these functional slope changes (i.e. random slopes by year) improved predictions of the observed pVL median changes between 2019 and 2021, leading us to hypothesize underlying ecological and evolutionary factors. Our analysis involved a dataset of pVL values from 7325 ART-naïve individuals living with HIV, accompanied by their associated clinical and viral molecular predictors. A conventional fixed-effects linear model revealed significant correlations between pVL and predictors that evolved over time. However, this fixed-effects model could not fully explain the reduction in median pVL; thus, prompting us to adopt random-effects models. After applying a random effects regression model-with random slopes and intercepts by year-, we observed potential "functional changes" within the local HIV viral population, highlighting the importance of ecological and evolutionary considerations in HIV dynamics: A notably stronger negative correlation emerged between HIV pVL and the CpG content in the pol gene, suggesting a changing immune landscape influenced by CpG-induced innate immune responses that could impact viral load dynamics. Our study underscores the significance of random effects models in capturing dynamic correlations and the crucial role of molecular characteristics like CpG content. By enriching our understanding of changing host-virus interactions and HIV progression, our findings contribute to the broader relevance of such models in infectious disease research. They shed light on the changing interplay between host and pathogen, driving us closer to more effective strategies for managing infectious diseases. SIGNIFICANCE OF THE STUDY: This study highlights a decreasing trend in median plasma viral loads among ART-naïve individuals living with HIV in Mexico City between 2019 and 2021. It uncovers various predictors significantly correlated with pVL, shedding light on the complex interplay between host-virus interactions and disease progression. By employing a random-slopes model, the researchers move beyond traditional fixed-effects models to better capture dynamic correlations and evolutionary changes in HIV dynamics. The discovery of a stronger negative correlation between pVL and CpG content in HIV-pol sequences suggests potential changes in the immune landscape and innate immune responses, opening avenues for further research into adaptive changes and responses to environmental shifts in the context of HIV infection. The study's emphasis on molecular characteristics as predictors of pVL adds valuable insights to epidemiological and evolutionary studies of viruses, providing new avenues for understanding and managing HIV infection at the population level.


Assuntos
Infecções por HIV , Carga Viral , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , México/epidemiologia , Feminino , Masculino , HIV-1/fisiologia , HIV-1/imunologia , HIV-1/genética , Adulto , Ilhas de CpG/genética
18.
Biol Pharm Bull ; 47(5): 905-911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692867

RESUMO

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.


Assuntos
Glicólise , Infecções por HIV , HIV-1 , Replicação Viral , Humanos , HIV-1/fisiologia , Glicólise/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo
19.
Methods Mol Biol ; 2807: 15-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743218

RESUMO

Live-cell imaging has become a powerful tool for dissecting the behavior of viral complexes during HIV-1 infection with high temporal and spatial resolution. Very few HIV-1 particles in a viral population are infectious and successfully complete replication (~1/50). Single-particle live-cell imaging enables the study of these rare infectious viral particles, which cannot be accomplished in biochemical assays that measure the average property of the entire viral population, most of which are not infectious. The timing and location of many events in the early stage of the HIV-1 life cycle, including nuclear import, uncoating, and integration, have only recently been elucidated. Live-cell imaging also provides a valuable approach to study interactions of viral and host factors in distinct cellular compartments and at specific stages of viral replication. Successful live-cell imaging experiments require careful consideration of the fluorescent labeling method used and avoid or minimize its potential impact on normal viral replication and produce misleading results. Ideally, it is beneficial to utilize multiple virus labeling strategies and compare the results to ensure that the virion labeling did not adversely influence the viral replication step that is under investigation. Another potential benefit of using different labeling strategies is that they can provide information about the state of the viral complexes. Here, we describe our methods that utilize multiple fluorescent protein labeling approaches to visualize and quantify important events in the HIV-1 life cycle, including docking HIV-1 particles with the nuclear envelope (NE) and their nuclear import, uncoating, and proviral transcription.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1 , Transcrição Gênica , Replicação Viral , HIV-1/fisiologia , HIV-1/genética , Humanos , Desenvelopamento do Vírus , Provírus/genética , Provírus/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Vírion/metabolismo , Vírion/genética
20.
Methods Mol Biol ; 2807: 61-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743221

RESUMO

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Assuntos
Membrana Celular , HIV-1 , Microscopia de Fluorescência , Imagem Individual de Molécula , Linfócitos T , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , Humanos , Membrana Celular/metabolismo , Membrana Celular/virologia , Imagem Individual de Molécula/métodos , Linfócitos T/virologia , Linfócitos T/metabolismo , Microscopia de Fluorescência/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...