Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445871

RESUMO

Understanding the mechanisms responsible for anxiety disorders is a major challenge. Avoidance behavior is an essential feature of anxiety disorders. The two-way avoidance test is a preclinical model with two distinct subpopulations-the good and poor performers-based on the number of avoidance responses presented during testing. It is believed that the habenula subnuclei could be important for the elaboration of avoidance response with a distinct pattern of activation and neuroinflammation. The present study aimed to shed light on the habenula subnuclei signature in avoidance behavior, evaluating the pattern of neuronal activation using FOS expression and astrocyte density using GFAP immunoreactivity, and comparing control, good and poor performers. Our results showed that good performers had a decrease in FOS immunoreactivity (IR) in the superior part of the medial division of habenula (MHbS) and an increase in the marginal part of the lateral subdivision of lateral habenula (LHbLMg). Poor performers showed an increase in FOS in the basal part of the lateral subdivision of lateral habenula (LHbLB). Considering the astroglial immunoreactivity, the poor performers showed an increase in GFAP-IR in the inferior portion of the medial complex (MHbl), while the good performers showed a decrease in the oval part of the lateral part of the lateral complex (LHbLO) in comparison with the other groups. Taken together, our data suggest that specific subdivisions of the MHb and LHb have different activation patterns and astroglial immunoreactivity in good and poor performers. This study could contribute to understanding the neurobiological mechanisms responsible for anxiety disorders.


Assuntos
Habenula , Humanos , Habenula/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo
2.
Biol Res ; 56(1): 25, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194106

RESUMO

BACKGROUND: Mechanoreceptor activation modulates GABA neuron firing and dopamine (DA) release in the mesolimbic DA system, an area implicated in reward and substance abuse. The lateral habenula (LHb), the lateral hypothalamus (LH), and the mesolimbic DA system are not only reciprocally connected, but also involved in drug reward. We explored the effects of mechanical stimulation (MS) on cocaine addiction-like behaviors and the role of the LH-LHb circuit in the MS effects. MS was performed over ulnar nerve and the effects were evaluated by using drug seeking behaviors, optogenetics, chemogenetics, electrophysiology and immunohistochemistry. RESULTS: Mechanical stimulation attenuated locomotor activity in a nerve-dependent manner and 50-kHz ultrasonic vocalizations (USVs) and DA release in nucleus accumbens (NAc) following cocaine injection. The MS effects were ablated by electrolytic lesion or optogenetic inhibition of LHb. Optogenetic activation of LHb suppressed cocaine-enhanced 50 kHz USVs and locomotion. MS reversed cocaine suppression of neuronal activity of LHb. MS also inhibited cocaine-primed reinstatement of drug-seeking behavior, which was blocked by chemogenetic inhibition of an LH-LHb circuit. CONCLUSION: These findings suggest that peripheral mechanical stimulation activates LH-LHb pathways to attenuate cocaine-induced psychomotor responses and seeking behaviors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Habenula , Humanos , Transtornos Relacionados ao Uso de Cocaína/terapia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Habenula/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Neurônios , Dopamina/metabolismo , Dopamina/farmacologia , Hipotálamo/metabolismo
3.
Biol. Res ; 56: 25-25, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1513737

RESUMO

BACKGROUND: Mechanoreceptor activation modulates GABA neuron firing and dopamine (DA) release in the mesolimbic DA system, an area implicated in reward and substance abuse. The lateral habenula (LHb), the lateral hypothalamus (LH), and the mesolimbic DA system are not only reciprocally connected, but also involved in drug reward. We explored the effects of mechanical stimulation (MS) on cocaine addiction-like behaviors and the role of the LH-LHb circuit in the MS effects. MS was performed over ulnar nerve and the effects were evaluated by using drug seeking behaviors, optogenetics, chemogenetics, electrophysiology and immunohistochemistry. RESULTS: Mechanical stimulation attenuated locomotor activity in a nerve-dependent manner and 50-kHz ultrasonic vocalizations (USVs) and DA release in nucleus accumbens (NAc) following cocaine injection. The MS effects were ablated by electrolytic lesion or optogenetic inhibition of LHb. Optogenetic activation of LHb suppressed cocaine-enhanced 50 kHz USVs and locomotion. MS reversed cocaine suppression of neuronal activity of LHb. MS also inhibited cocaine-primed reinstatement of drug-seeking behavior, which was blocked by chemogenetic inhibition of an LH-LHb circuit. CONCLUSION: These findings suggest that peripheral mechanical stimulation activates LH-LHb pathways to attenuate cocaine-induced psychomotor responses and seeking behaviors.


Assuntos
Humanos , Cocaína/metabolismo , Cocaína/farmacologia , Habenula/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/terapia , Dopamina/metabolismo , Dopamina/farmacologia , Hipotálamo/metabolismo , Neurônios
4.
BMC Res Notes ; 13(1): 14, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910899

RESUMO

OBJECTIVE: F-spondin is part of a group of evolutionarily conserved extracellular matrix proteins in vertebrates. It is highly expressed in the embryonic floor plate, and it can bind to the ECM and promote neuronal outgrowth. A characterization of F-spondin expression patterns in the adult zebrafish brain was previously reported by our group. However, given its importance during development, we aimed to obtain a detailed description of green fluorescent protein (GFP) expression driven by the spon1b promotor, in the developing zebrafish brain of the transgenic Tg(spon1b:GFP) line, using light sheet fluorescence microscopy (LSFM). RESULTS: Images obtained in live embryos from 22 to 96 h post fertilization confirmed our earlier reports on the presence of spon1b:GFP expressing cells in the telencephalon and diencephalon (olfactory bulbs, habenula, optic tectum, nuclei of the medial longitudinal fasciculus), and revealed new spon1b:GFP populations in the pituitary anlage, dorso-rostral cluster, and ventro-rostral cluster. LSFM made it possible to follow the dynamics of cellular migration patterns during development. CONCLUSIONS: spon1b:GFP larval expression patterns starts in early development in specific neuronal structures of the developing brain associated with sensory-motor modulation. LSFM evaluation of the transgenic Tg(spon1b:GFP) line provides an effective approach to characterize GFP expression patterns in vivo.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Embrião não Mamífero/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fertilização , Proteínas de Fluorescência Verde/metabolismo , Habenula/embriologia , Habenula/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
Transl Psychiatry ; 8(1): 50, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29479060

RESUMO

The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.


Assuntos
Comportamento Animal/fisiologia , Estrogênios/metabolismo , Neurônios GABAérgicos/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Habenula/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiologia , Mesencéfalo/fisiologia , Motivação/fisiologia , Transdução de Sinais/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Habenula/metabolismo , Hipotálamo/metabolismo , Masculino , Mesencéfalo/metabolismo , Ratos , Ratos Wistar
6.
J Comp Neurol ; 522(7): 1454-84, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24374795

RESUMO

The lateral habenula (LHb) is an epithalamic structure differentiated in a medial (LHbM) and a lateral division (LHbL). Together with the rostromedial tegmental nucleus (RMTg), the LHb has been implicated in the processing of aversive stimuli and inhibitory control of monoamine nuclei. The inhibitory LHb influence on midbrain dopamine neurons has been shown to be mainly mediated by the RMTg, a mostly GABAergic nucleus that receives a dominant input from the LHbL. Interestingly, the RMTg also projects to the dorsal raphe nucleus (DR), which also receives direct LHb projections. To compare the organization and transmitter phenotype of LHb projections to the DR, direct and indirect via the RMTg, we first placed injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the LHb or the RMTg. We then confirmed our findings by retrograde tracing and investigated a possible GABAergic phenotype of DR-projecting RMTg neurons by combining retrograde tracing with in situ hybridization for GAD67. We found only moderate direct LHb projections to the DR, which mainly emerged from the LHbM and were predominantly directed to the serotonin-rich caudal DR. In contrast, RMTg projections to the DR were more robust, emerged from RMTg neurons enriched in GAD67 mRNA, and were focally directed to a distinctive DR subdivision immunohistochemically characterized as poor in serotonin and enriched in presumptive glutamatergic neurons. Thus, besides its well-acknowledged role as a GABAergic control center for the ventral tegmental area (VTA)-nigra complex, our findings indicate that the RMTg is also a major GABAergic relay between the LHb and the DR.


Assuntos
Habenula/anatomia & histologia , Neurônios/citologia , Núcleos da Rafe/anatomia & histologia , Tegmento Mesencefálico/anatomia & histologia , Animais , Imunofluorescência , Habenula/metabolismo , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Tegmento Mesencefálico/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Development ; 140(19): 3997-4007, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24046318

RESUMO

Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Habenula/embriologia , Habenula/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
J Comp Neurol ; 519(18): 3727-47, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21674490

RESUMO

The habenular complex (HbCpx) is a phylogenetically conserved brain structure located in the epithalamus of vertebrates. Despite its fundamental role in decision-making processes and the proposed link between habenular dysfunction and neuropsychiatric conditions, little is known about the structural and functional organization of the HbCpx in humans. The goal of this study was thus to provide a first systematic morphologic and immunohistochemical analysis of the human HbCpx to begin dissecting its nuclear and subnuclear organization. Our results confirmed that the human HbCpx is subdivided into medial (MHb) and lateral (LHb) nuclei, each showing a large degree of intranuclear morphologic heterogeneity. Analysis of serially stained sections using a combination of morphologic and immunohistochemical criteria allowed the distinction of five subnuclei in both the MHb and LHb. Overall, the observed subnuclear organization of the MHb in humans resembles the organization of subnuclei in the MHb of rats. The shape, relative size, and intranuclear organization of the LHb, however, show significant differences. The contribution of the LHb to the entire HbCpx is about five times larger in humans than in rats. Noteworthy, a dorsal domain of the LHb that contains afferent myelinated fibers from the stria medullaris and shows GABA-(B) -R(1) immunoreactive cells, appears substantially enlarged in humans when compared to rats. This feature seems to account for a large part of the relative growth in size of the LHb in humans and opens the intriguing possibility of an increased influence of limbic and striatal afferents into the LHb of humans.


Assuntos
Diencéfalo/anatomia & histologia , Habenula/anatomia & histologia , Vias Neurais/citologia , Neurônios/citologia , Receptores de GABA-B/metabolismo , Adulto , Idoso , Animais , Diencéfalo/citologia , Diencéfalo/metabolismo , Habenula/citologia , Habenula/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Ratos , Valores de Referência , Especificidade da Espécie , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA