Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.250
Filtrar
1.
Sci Rep ; 14(1): 15046, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951601

RESUMO

The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like ß-caryophyllene, α-pinene, ß-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.


Assuntos
Hemípteros , Proteínas de Insetos , Filogenia , Receptores Odorantes , Animais , Hemípteros/metabolismo , Hemípteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Regulação da Expressão Gênica no Desenvolvimento , Simulação de Acoplamento Molecular , Sesquiterpenos Policíclicos/metabolismo , Limoneno/metabolismo , Sesquiterpenos/metabolismo
2.
Antonie Van Leeuwenhoek ; 117(1): 92, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949726

RESUMO

Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.


Assuntos
Nicotiana , Controle Biológico de Vetores , Doenças das Plantas , Pseudomonas syringae , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Pseudomonas syringae/fisiologia , Controle Biológico de Vetores/métodos , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Insetos/microbiologia , Tisanópteros/microbiologia , Resistência à Doença , Desenvolvimento Vegetal , Agentes de Controle Biológico , Hemípteros/microbiologia
3.
Sci Rep ; 14(1): 15259, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956259

RESUMO

Greenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T. vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions. In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis. Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions.


Assuntos
Beauveria , Hemípteros , Inseticidas , Controle Biológico de Vetores , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/microbiologia , Inseticidas/farmacologia , Beauveria/fisiologia , Controle Biológico de Vetores/métodos , Cordyceps , Compostos de Espiro/farmacologia
4.
Funct Integr Genomics ; 24(4): 121, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976062

RESUMO

Insect mitochondrial genomes (mitogenomes) are usually represented by a conserved gene order. Whiteflies exhibit gene rearrangement in their mitogenomes; however, understanding how nucleotide substitution rates shape gene rearrangement in whiteflies is unclear due to the limited number of mitogenomes. Additionally, the mechanisms by which selection pressure drives adaptations in mitochondrial genes in the two subfamilies of whiteflies are not yet known. Here, we analyzed 18 whitefly mitogenomes, including one newly generated mitogenome, to compare nucleotide substitution rates, selection pressure, and gene arrangements. The newly generated mitogenome is reported along with reannotation of Pealius mori and comparisons to other whitefly mitogenomes. Comparative studies on nucleotide composition of 18 whiteflies revealed the positive GC skewness, confirming the reversal of strand asymmetry. We found 11 rearranged gene orders within two subfamilies of whiteflies with 8-18 breakpoints of gene rearrangements. Members of the subfamily Aleyrodinae exhibit more complex pathways in the evolution of gene order as compared to the subfamily Aleurodicinae. Our findings also revealed that the increase or reduction of nucleotide substitution rates does not have an impact on any of the gene rearrangement scenarios depicting neutral correlation. Selection pressure analysis revealed that the mitogenomes from members of both the subfamilies Aleurodicinae and Aleyrodinae are characterized by intense purifying selection pressure.


Assuntos
Evolução Molecular , Rearranjo Gênico , Genoma Mitocondrial , Hemípteros , Seleção Genética , Animais , Hemípteros/genética , Genes Mitocondriais , Filogenia , Adaptação Fisiológica/genética
5.
PeerJ ; 12: e17476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974414

RESUMO

The whitefly, Bemisia tabaci (Gennadius), is a polyphagous and major pest of cotton worldwide. Both adults and nymphs of B. tabaci affect the crop by causing direct and indirect damage. A severe whitefly outbreak was experienced during 2015 on cotton in North India and this was followed by a profound infestation during 2022. The present research rigorously examined whether the proliferation in the whitefly population was an outbreak or the result of a multi factor resurgence. During 2015, whitefly counts remained above the economic threshold level (ETL) between 28th and 35th Standard Meteorological Week (SMW). However, during 2022 above ETL population was observed in 27th SMW and it persisted until 36th SMW. The peak incidence of the whitefly was noticed during 31st and 29th SMW in 2015 and 2022, respectively. The early pest build up in 2022 and longer persistence (≥10 weeks) over the cotton season resulted in more damage to cotton crop. Additionally, pest survillence across the zone on the farmers' fields during 2022 revealed 44.4 per cent spots (585 out of 1,317 locations) above ETL while the corresponding locations in 2015 was 57% (620 out of 1,089). Thus, in 2022 infestation was not uniform in the entire zone wherein only few blocks of Punjab, Haryana and Rajasthan states of India experienced severe infestations of the whitefly. This study reports the complex of factors including weather, delayed sowing, use of tank mixtures/ subleathal doses of insecticides, pest resurgence etc. that might have possibly contributed to these upsurges in whitefly on cotton in north India.


Assuntos
Gossypium , Hemípteros , Animais , Índia/epidemiologia , Gossypium/parasitologia , Estações do Ano , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos
7.
J Math Biol ; 89(3): 30, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017723

RESUMO

To describe the transmission dynamics of maize streak virus infection, in the paper, we first formulate a stochastic maize streak virus infection model, in which the stochastic fluctuations are depicted by a logarithmic Ornstein-Uhlenbeck process. This approach is reasonable to simulate the random impacts of main parameters both from the biological significance and the mathematical perspective. Then we investigate the detailed dynamics of the stochastic system, including the existence and uniqueness of the global solution, the existence of a stationary distribution, the exponential extinction of the infected maize and infected leafhopper vector. Especially, by solving the five-dimensional algebraic equations corresponding to the stochastic system, we obtain the specific expression of the probability density function near the quasi-endemic equilibrium of the stochastic system, which provides valuable insights into the stationary distribution. Finally, the model is discretized using the Milstein higher-order numerical method to illustrate our theoretical results numerically. Our findings provide a groundwork for better methods of preventing the spread of this type of virus.


Assuntos
Vírus do Listrado do Milho , Conceitos Matemáticos , Modelos Biológicos , Doenças das Plantas , Processos Estocásticos , Zea mays , Doenças das Plantas/virologia , Doenças das Plantas/estatística & dados numéricos , Zea mays/virologia , Animais , Vírus do Listrado do Milho/fisiologia , Simulação por Computador , Insetos Vetores/virologia , Epidemias/estatística & dados numéricos , Hemípteros/virologia
8.
Neotrop Entomol ; 53(4): 786-832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955943

RESUMO

The Mecocephala group comprises about 50 species, restricted to the Neotropics and with the highest species richness in Neotropical South America. Several species use rice as host plants and their identification is facilitated by the presence of exaggerated head proportions and a unique male genitalic morphology. The taxonomy of the group has been extensively explored, but inferring its monophyly and especially its internal phylogenetic relationships has been challenging. Here, we inferred the phylogenetic relationships for the group assembling the most complete taxonomic sampling to date, analyzing discrete and continuous morphological characters through equal and implied weighted parsimony analyses. The monophyly of the group was recovered, but internal relationships varied slightly according to the dataset tested. Thus, we propose internal arrangements for the group and provide a formal description of the Mecocephala group, diagnoses for each genus, a dichotomous key to identify its genera, and illustrations of the morphological characters and type species.


Assuntos
Filogenia , Animais , Masculino , América do Sul , Heterópteros/anatomia & histologia , Heterópteros/classificação , Feminino , Hemípteros/anatomia & histologia , Hemípteros/classificação
9.
Sci Rep ; 14(1): 16248, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009624

RESUMO

Psyllid species, including the potato psyllid (PoP) Bactericera cockerelli (Sulc) (Triozidae) serve as host and vector of "Candidatus Liberibacter spp." ("Ca. Liberibacter"), which also infects diverse plant hosts, including citrus and tomato. Psyllid transmission of "Ca. Liberibacter" is circulative and propagative. The time of "Ca. Liberibacter" acquisition and therefore vector life stage most competent for bacterial transmission varies by pathosystems. Here, the potato psyllid-"Ca. Liberibacter solanacearum" (CLso) pathosystem was investigated to dissect CLso-prophage interactions in the tomato plant and PoP-psyllid host by real-time quantitative reverse transcriptase amplification of CLso genes/loci with predicted involvement in host infection and psyllid-CLso transmission. Genes/loci analyzed were associated with (1) CLso-adhesion, -invasion, -pathogenicity, and -motility, (2) prophage-adhesion and pathogenicity, and (3) CLso-lysogenic cycle. Relative gene expression was quantified by qRT-PCR amplification from total RNA isolated from CLso-infected 1st-2nd and 4th-5th nymphs and teneral adults and CLso-infected tomato plants in which CLso infection is thought to occur without SC1-SC2 replication. Gene/loci expression was host-dependent and varied with the psyllid developmental stage. Loci previously associated with repressor-anti-repressor regulation in the "Ca Liberibacter asiaticus"-prophage pathosystem, which maintains the lysogenic cycle in Asian citrus psyllid Diaphorina citri, were expressed in CLso-infected psyllids but not in CLso-infected tomato plants.


Assuntos
Hemípteros , Doenças das Plantas , Prófagos , Solanum lycopersicum , Animais , Hemípteros/microbiologia , Prófagos/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Solanum tuberosum/parasitologia , Insetos Vetores/microbiologia , Rhizobiaceae/genética , Regulação Bacteriana da Expressão Gênica , Estágios do Ciclo de Vida/genética
10.
Elife ; 132024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985571

RESUMO

Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.


Assuntos
Fertilidade , Hemípteros , Hormônios de Inseto , Ácido Pirrolidonocarboxílico , Transdução de Sinais , Animais , Hormônios de Inseto/metabolismo , Hormônios de Inseto/genética , Feminino , Hemípteros/microbiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Rhizobiaceae/fisiologia , Rhizobiaceae/metabolismo , Metabolismo dos Lipídeos , Ovário/microbiologia , Ovário/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Hormônios Juvenis/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Liberibacter , Oligopeptídeos
11.
Proc Natl Acad Sci U S A ; 121(28): e2402407121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959045

RESUMO

Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.


Assuntos
Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G , Animais , Hemípteros/genética , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Feminino , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
12.
Front Cell Infect Microbiol ; 14: 1408362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938879

RESUMO

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is the leading vector of Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus Huanglongbing (HLB) disease. The distribution and dynamics of CLas within ACP are critical to understanding how the transmission, spread and infection of CLas occurs within its host vector in nature. In this study, the distribution and titer changes of CLas in various tissues of ACP 5th instar nymphs and adults were examined by fluorescence in situ hybridization (FISH) and real-time quantitative PCR (qPCR) techniques. Results demonstrated that 100% of ACP 5th instar nymphs and adults were infected with CLas following feeding on infected plants, and that CLas had widespread distribution in most of the tissues of ACP. The titers of CLas within the midgut, salivary glands and hemolymph tissues were the highest in both 5th instar nymphs and adults. When compared with adults, the titers of CLas in these three tissues of 5th instar nymphs were significantly higher, while in the mycetome, ovary and testes they were significantly lower than those of adults. FISH visualization further confirmed these findings. Dynamic analysis of CLas demonstrated that it was present across all the developmental ages of ACP adults. There was a discernible upward trend in the presence of CLas with advancing age in most tissues of ACP adults, including the midgut, hemolymph, salivary glands, foot, head, cuticula and muscle. Our findings have significant implications for the comprehensive understanding of the transmission, dissemination and infestation of CLas, which is of much importance for developing novel strategies to halt the spread of CLas, and therefore contribute to the efficient prevention and control of HLB.


Assuntos
Citrus , Hemípteros , Hibridização in Situ Fluorescente , Insetos Vetores , Ninfa , Doenças das Plantas , Animais , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Ninfa/microbiologia , Citrus/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/microbiologia , Hemolinfa/microbiologia
13.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942050

RESUMO

The electrical penetration graph (EPG) technique is the most powerful tool for studying the feeding behavior of pierce-sucking insects. However, calculating EPG variables is often very time-consuming, and consequently, several software programs have been developed for the automatic calculation of EPG variables. Here we present a new user-friendly Excel Workbook that uses a standardized list of EPG variables and follows expert guidelines for calculating them. The program developed in Visual Basic for Applications (VBA) is a step up from the existing software and allows easy data analysis and interpretation. It also includes a novel option for dealing with the common problem of "truncated"-waveforms artificially terminated by the end of recording. The only requirement to run the program is Microsoft Excel software running under a PC environment. The Workbook was validated by calculating variables from EPG recordings of aphids and psyllids and the results obtained were compared with those of existing software such as the Sarria Workbook. Our EPG Workbook provides researchers with a reliable and standardized tool for the automatic calculation of up to 127 EPG variables from phloem-sap-sucking insects.


Assuntos
Comportamento Alimentar , Software , Animais , Afídeos/fisiologia , Hemípteros/fisiologia
14.
Plant Physiol Biochem ; 213: 108812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875781

RESUMO

Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.


Assuntos
Begomovirus , Doenças das Plantas , Begomovirus/fisiologia , Doenças das Plantas/virologia , Hemípteros/virologia , Hemípteros/fisiologia , Resistência à Doença/genética , Animais , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , Insetos Vetores/virologia
15.
Microbiol Spectr ; 12(7): e0017024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38832800

RESUMO

Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.


Assuntos
Bacillus subtilis , Escherichia coli , Hemípteros , Policetídeos , Ribossomos , Simbiose , Hemípteros/microbiologia , Animais , Ribossomos/metabolismo , Ribossomos/genética , Policetídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Citrus/microbiologia , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo
16.
Curr Biol ; 34(13): 2990-2996.e4, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870934

RESUMO

The feeding of piercing-sucking insect herbivores often elicits changes in their host plants that benefit the insect.1 In addition to thwarting a host's defense responses, these phloem-feeding insects may manipulate source-sink signaling so as to increase resources consumed.2,3 To date, the molecular mechanisms underlying herbivore-induced resource reallocation remain less investigated. Brown planthopper (BPH), an important rice pest, feeds on the phloem and oviposits into leaf sheaths. BPH herbivory increases sugar accumulations 5-fold in the phloem sap of leaf sheaths and concurrently induces the expression of two clade III SWEET genes, SWEET13 and SWEET14, in leaf tissues, but not in leaf sheaths of attacked rice plants. Mutations of both genes by genome editing attenuate resistance to BPH without alterations of known chemical and physical defense responses. Moreover, BPH-elicited sugar levels in the phloem sap were significantly reduced in sweet13/14 mutants, which is likely to attenuate BPH feeding behavior on sweet13/14 mutants. In one of the two field seasons tested, the sweet13/14 mutants showed comparable yield to wild types, and in the other season, the mutants demonstrated stronger BPH resistance. These preliminary results suggested that the mutations in these SWEET transporters could enhance BPH resistance without yield penalties. Given that sweet13/14 mutants also exhibit resistance to bacterial blight pathogen, Xanthomonas oryzae pv. oryzae, these SWEET genes could serve as excellent molecular targets for the breeding of resistant rice cultivars.


Assuntos
Hemípteros , Oryza , Hemípteros/fisiologia , Hemípteros/genética , Hemípteros/microbiologia , Oryza/metabolismo , Oryza/genética , Oryza/microbiologia , Animais , Herbivoria , Floema/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Comportamento Alimentar/fisiologia , Açúcares/metabolismo
17.
Pestic Biochem Physiol ; 202: 105953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879307

RESUMO

The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.


Assuntos
Sistemas CRISPR-Cas , Quitina Sintase , Hemípteros , Resistência a Inseticidas , Inseticidas , Tiadiazinas , Animais , Hemípteros/genética , Resistência a Inseticidas/genética , Tiadiazinas/farmacologia , Quitina Sintase/genética , Inseticidas/farmacologia , Mutação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Técnicas de Introdução de Genes , Feminino , Masculino
19.
Plant Sci ; 346: 112157, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871029

RESUMO

Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.


Assuntos
Citrus , Herbivoria , Metabolismo Secundário , Compostos Orgânicos Voláteis , Citrus/metabolismo , Citrus/fisiologia , Citrus/genética , Compostos Orgânicos Voláteis/metabolismo , Animais , Adaptação Fisiológica , Estresse Fisiológico , Besouros/fisiologia , Desidratação , Secas , Hemípteros
20.
Neotrop Entomol ; 53(4): 703-714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874655

RESUMO

The leafroller Argyrotaenia sphaleropa (Meyrick) is an important pest of temperate fruits. Its biology and population dynamics are strongly influenced by temperature. In this context, this study aims to select a mathematical model that accurately describes the temperature-dependent development rate of A. sphaleropa and applies this model to predict the impact of climate change on the number of annual generations (voltinism) of the pest in southern Brazil. Nine mathematical models were employed to fit the species' developmental rate at different constant temperatures. Voltinism was projected using climate data from the current period (1994-2013) and projections for 2050 and 2070. The Brière-1 model (D(T) = aT(T-TL)(TH-T)1/2) provided the best fit for the temperature-dependent developmental rate of A. sphaleropa. According to this model, the regions with the highest voltinism under current climatic conditions are the northern and central areas of Paraná, the western and northeastern regions of Santa Catarina, and northwestern Rio Grande do Sul. The model also predicts a rise in A. sphaleropa voltinism as a consequence of climate change, especially in the mountainous regions of Santa Catarina and Rio Grande do Sul, with projected increases of up to 25.1%. These regions encompass most areas where temperate fruits used as hosts by the leafroller are cultivated. This study represents a significant advancement in understanding the implications of global warming on A. sphaleropa voltinism and suggests that forthcoming climatic conditions will likely favor the species across much of southern Brazil.


Assuntos
Mudança Climática , Frutas , Brasil , Animais , Modelos Teóricos , Hemípteros , Temperatura , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...