Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Osteoarthritis Cartilage ; 31(10): 1365-1376, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364817

RESUMO

OBJECTIVE: The detrimental effects of blood exposure on articular tissues are well characterized, but the individual contributions of specific whole blood components are yet to be fully elucidated. Better understanding of mechanisms that drive cell and tissue damage in hemophilic arthropathy will inform novel therapeutic strategies. The studies here aimed to identify the specific contributions of intact and lysed red blood cells (RBCs) on cartilage and the therapeutic potential of Ferrostatin-1 in the context of lipid changes, oxidative stress, and ferroptosis. METHODS: Changes to biochemical and mechanical properties following intact RBC treatment were assessed in human chondrocyte-based tissue-engineered cartilage constructs and validated against human cartilage explants. Chondrocyte monolayers were assayed for changes to intracellular lipid profiles and the presence of oxidative and ferroptotic mechanisms. RESULTS: Markers of tissue breakdown were observed in cartilage constructs without parallel losses in DNA (control: 786.3 (102.2) ng/mg; RBCINT: 751 (126.4) ng/mg; P = 0.6279), implicating nonlethal chondrocyte responses to intact RBCs. Dose-dependent loss of viability in response to intact and lysed RBCs was observed in chondrocyte monolayers, with greater toxicity observed with lysates. Intact RBCs induced changes to chondrocyte lipid profiles, upregulating highly oxidizable fatty acids (e.g., FA 18:2) and matrix disrupting ceramides. RBC lysates induced cell death via oxidative mechanisms that resemble ferroptosis. CONCLUSIONS: Intact RBCs induce intracellular phenotypic changes to chondrocytes that increase vulnerability to tissue damage while lysed RBCs have a more direct influence on chondrocyte death by mechanisms that are representative of ferroptosis.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Condrócitos/metabolismo , Hemartrose/metabolismo , Cartilagem Articular/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Lipídeos
2.
Osteoarthritis Cartilage ; 31(8): 1066-1077, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146959

RESUMO

OBJECTIVE: To compare the metabolic profiles of synovial fluid (SF) from patients with anterior cruciate ligament tears and hemarthrosis (HA) with that of normal controls, using 1H NMR spectroscopy (NMRS). METHODS: Synovial fluid was collected from eleven patients undergoing arthroscopic debridement within 14 days following an anterior cruciate ligament (ACL) tear and hemarthrosis. Ten additional SF samples were obtained from the knees of osteoarthritis-free volunteers to serve as normal controls. The relative concentrations of twenty-eight endogenous SF metabolites (hydroxybutyrate, acetate, acetoacetate, acetone, alanine, arginine, choline, citrate, creatine, creatinine, formate, glucose, glutamate, glutamine, glycerol, glycine, histidine, isoleucine, lactate, leucine, lysine, phenylalanine, proline, pyruvate, threonine, tyrosine, valine, and the mobile components of glycoproteins and lipids) were evaluated using NMRS and quantified using CHENOMX metabolomics analysis software. Mean differences between groups were evaluated with t-tests controlling for multiple comparisons at an overall error rate of 0.10. RESULTS: Statistically significant increases in the levels of glucose, choline, the branched-chain amino acids leucine, isoleucine, and valine, and the mobile components of N-acetyl glycoproteins and lipids were observed in ACL/HA SF as compared with normal controls; lactate levels were reduced. CONCLUSIONS: Marked changes occur in the metabolic profiles of human knee fluid following ACL injury and hemarthrosis, suggestive of increased demand and accompanying inflammatory response; potentially increased lipid and glucose metabolism; and possible hyaluronan degradation within the joint following trauma.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/metabolismo , Líquido Sinovial/metabolismo , Hemartrose/etiologia , Hemartrose/metabolismo , Isoleucina/análise , Isoleucina/metabolismo , Leucina , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Glicoproteínas/metabolismo , Metabolômica , Glucose/metabolismo , Lipídeos/análise
3.
J Thromb Haemost ; 21(9): 2390-2404, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116753

RESUMO

BACKGROUND: Mechanisms of iron clearance from hemophilic joints are unknown. OBJECTIVES: To better understand mechanisms of iron clearance following joint bleeding in a mouse model of hemophilia. METHODS: Hemarthrosis was induced by subpatellar puncture in factor VIII (FVIII)-deficient (FVII-/-) mice, +/- periprocedural recombinant human FVIII, and hypocoagulable (HypoBALB/c) mice. HypoBALB/c mice experienced transient FVIII deficiency (anti-FVIII antibody) at the time of injury combined with warfarin-induced hypocoagulability. Synovial tissue was harvested weekly up to 6 weeks after injury for histological analysis, ferric iron and macrophage accumulation (CD68), blood and lymphatic vessel remodeling (αSMA; LYVE1). Synovial RNA sequencing was performed for FVIII-/- mice at days 0, 3, and 14 after injury to quantify expression changes of iron regulators and lymphatic markers. RESULTS: Bleed volumes were similar in FVIII-/- and HypoBALB/c mice. However, pronounced and prolonged synovial iron accumulation colocalizing with macrophages and impaired lymphangiogenesis were detected only in FVIII-/- mice and were prevented by periprocedural FVIII. Gene expression changes involved in iron handling (some genes with dual roles in inflammation) and lymphatic markers supported proinflammatory milieu with iron retention and disturbed lymphangiogenesis. CONCLUSION: Accumulation and delayed clearance of iron-laden macrophages were associated with defective lymphangiogenesis after hemarthrosis in FVIII-/- mice. The absence of such findings in HypoBALB/c mice suggests that intact lymphatics are required for removal of iron-laden macrophages and that these processes depend on FVIII availability. Studies to elucidate the biological mechanisms of disturbed lymphangiogenesis in hemophilia appear critical to develop new therapeutic targets.


Assuntos
Hemofilia A , Hemostáticos , Camundongos , Humanos , Animais , Fator VIII/genética , Fator VIII/metabolismo , Hemartrose/metabolismo , Hemofilia A/terapia , Linfangiogênese , Modelos Animais de Doenças , Ferro
4.
Clin Orthop Relat Res ; 481(8): 1634-1647, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036937

RESUMO

BACKGROUND: Hemophilic arthropathy can cause recurrent hemarthroses and severe damage to the synovium and articular cartilage. Previous studies have shown that vascular endothelial growth factor (VEGF) plays an essential role in neoangiogenesis. Bevacizumab, a monoclonal VEGF inhibitor, is used clinically to prevent angiogenesis. However, its effects on hemophilic arthropathy are unknown. QUESTIONS/PURPOSES: Using a hemophilic arthropathy rabbit model, we asked: Does an intra-articular injection of bevacizumab (1) inhibit VEGF, (2) decrease signal intensity in dynamic contrast-enhanced MRI (DCE-MRI) as an assessment of capillary permeability and neoangiogenesis, (3) reduce cartilage damage, (4) reduce synovial changes, and (5) affect macroscopic changes during the development of hemophilic arthropathy? METHODS: Twenty-five male New Zealand rabbits were divided into four groups. Eight knees from four rabbits were used as the control group. We used an established animal model for hemophilic arthropathy in the remaining 21 rabbits. Animals were assigned randomly to three groups with seven rabbits in each group. One group was used to establish mild arthropathy, and the other two were used to establish severe arthropathy. Autologous blood from the rabbits' ears was injected into the right and left knees twice per week for 8 weeks to represent mild arthropathy and for 16 weeks to represent severe arthropathy. In the mild arthropathy group, bevacizumab was injected into the right knee once every 2 weeks. Bevacizumab was injected into the right knee of rabbits in one of the severe arthropathy groups once every 2 weeks for 16 weeks, and intra-articular bevacizumab injections were administered to the right knees of rabbits in the other severe arthropathy group once every 2 weeks after the eighth week. An equal volume of 0.9% saline was injected into the left knee of rabbits in all arthropathy groups. To explore the efficacy of bevacizumab, joint diameters were quantitatively measured, and cartilage and synovial changes were examined. Degeneration of articular cartilage was evaluated with the semiquantitative Osteoarthritis Research Society International grading system. Synovial damage was analyzed with a semiquantitative microscopic scoring system. In addition, we evaluated perfusion and angiogenesis using DCE-MRI (quantitative signal intensity changes). Immunohistochemical testing was used to measure VEGF levels (analyzed by Western blotting). RESULTS: Intra-articular bevacizumab treatment inhibited VEGF in our rabbit model of hemophilic arthropathy. VEGF protein expression levels were lower in the mild arthropathy group that received intra-articular bevacizumab (0.89 ± 0.45) than the mild arthropathy control group (1.41 ± 0.61) (mean difference -0.52 [95% CI -0.898 to -0.143]; p = 0.02). VEGF levels were lower in the severe arthropathy group that received treatment for 16 weeks (0.94 ± 0.27) than in the control knees (1.49 ± 0.36) (mean difference -0.55 [95% CI -0.935 to -0.161]; p = 0.01). In the severe arthropathy group, the Osteoarthritis Research Society International score indicating cartilage damage was lower in the group that received intra-articular bevacizumab treatment from the beginning than in the control group (median 17 [range 13 to 18] versus 18 [range 17 to 20]; difference of medians 1; p = 0.02). Additionally, the scores indicated synovial damage was lower in the group that received intra-articular bevacizumab treatment from the beginning than the control group (median 5 [range 4 to 9] versus 9 [range 8 to 12]; difference of medians 4; p = 0.02). The mean of mean values for signal intensity changes was higher in the nontreated severe groups than in the group of healthy knees. The signal intensity changes were higher in the severe arthropathy control groups (Groups BC and CC) (median 311.6 [range 301.4 to 361.2] and 315.1 [range 269.7 to 460.4]) than in the mild arthropathy control group (Group AC) (median 234.1 [range 212.5 to 304.2]; difference of medians 77.5 and 81, respectively; p = 0.02 and p = 0.04, respectively). In the severe arthropathy group, discoloration caused by hemosiderin deposition in the cartilage and synovium was more pronounced than in the mild arthropathy group. In the severe arthropathy group treated with intra-articular bevacizumab, joint diameters were smaller than in the control group (Group BT median 12.7 mm [range 12.3 to 14.0] versus Group BC median 14.0 mm [range 13.1 to 14.5]; difference of medians 1.3 mm; p = 0.02). CONCLUSION: Hemarthrosis damages the synovial tissues and cartilage in the knees of rabbits, regardless of whether they are treated with intra-articular bevacizumab. However, intra-articular injection of bevacizumab may reduce cartilage and synovial damage in rabbits when treatment is initiated early during the development of hemophilic arthropathy. CLINICAL RELEVANCE: If the findings in this study are replicated in larger-animal models that consider the limitations of our work, then a trial in humans might be appropriate to ascertain whether intra-articular injection of bevacizumab could reduce cartilage damage and synovial changes in patients with hemophilia whose hemarthroses cannot otherwise be controlled.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Coelhos , Masculino , Animais , Bevacizumab/farmacologia , Bevacizumab/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hemartrose/tratamento farmacológico , Hemartrose/etiologia , Hemartrose/metabolismo , Membrana Sinovial/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Injeções Intra-Articulares
5.
Mol Biol Rep ; 48(1): 969-974, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33289909

RESUMO

Haemophilic arthropathy (HA), caused by intra-articular haemorrhage, is one of the most common complications in patients with haemophilia. Factor replacement therapy provides missing coagulation factors to prevent children with haemophilia from joint bleeding and decreases their risk for HA. However, haemophilia patients in developing countries are still suffering from HA due to insufficient replacement therapy. Symptoms such as pain and activity limitations caused by HA seriously affect the functional abilities and quality of life of patients with HA, causing a high disability rate in the haemophilia cohort. The pathological mechanism of HA is complicated because the whole pathological mainly involves hypertrophic synovitis, osteopenia, cartilage and bone destruction, and these pathological changes occur in parallel and interact with each other. Inflammation plays an important role in the whole complex pathological process, and iron, cytokines, growth factors and other factors are involved. This review summarizes the pathological mechanism of HA to provide background for clinical and basic research.


Assuntos
Artrite/patologia , Doenças Ósseas Metabólicas/patologia , Hemartrose/patologia , Hemofilia A/patologia , Osteonecrose/patologia , Sinovite/patologia , Adulto , Artrite/genética , Artrite/imunologia , Artrite/metabolismo , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/metabolismo , Criança , Citocinas/genética , Citocinas/imunologia , Fator VIII/uso terapêutico , Regulação da Expressão Gênica , Hemartrose/genética , Hemartrose/imunologia , Hemartrose/metabolismo , Hemofilia A/genética , Hemofilia A/imunologia , Hemofilia A/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Ferro/imunologia , Ferro/metabolismo , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Osteonecrose/genética , Osteonecrose/imunologia , Osteonecrose/metabolismo , Qualidade de Vida , Sinovite/genética , Sinovite/imunologia , Sinovite/metabolismo
6.
Osteoarthritis Cartilage ; 29(4): 471-479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307179

RESUMO

Injury to the meniscus is common and frequently leads to the development of post-traumatic osteoarthritis (PTOA). Many times meniscus injuries occur coincident with anterior cruciate ligament (ACL) injuries and lead to a bloody joint effusion. Hemarthrosis, or bleeding into the joint, has been implicated in degeneration of joint tissues. The goal of this review paper is to understand the pathophysiology of blood-induced joint damage, the possible effects of blood on meniscus tissue, and the implications for current meniscus repair techniques that involve the introduction of blood-derived products into the joint. In this review, we illustrate the similarities in the pathophysiology of joint damage due to hemophilic arthropathy (HA) and osteoarthritis (OA). Although numerous studies have revealed the harmful effects of blood on cartilage and synovium, there is currently a gap in knowledge regarding the effects of hemarthrosis on meniscus tissue homeostasis, healing, and the development of PTOA following meniscus injury. Given that many meniscus repair techniques utilize blood-derived and marrow-derived products, it is essential to understand the effects of these factors on meniscus tissue and the whole joint organ to develop improved strategies to promote meniscus tissue repair and prevent PTOA development.


Assuntos
Sangue/metabolismo , Hemartrose/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Membrana Sinovial/fisiopatologia , Lesões do Menisco Tibial/terapia , Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Transplante de Medula Óssea/métodos , Hemartrose/etiologia , Hemartrose/metabolismo , Humanos , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/metabolismo , Plasma Rico em Plaquetas , Procedimentos de Cirurgia Plástica/métodos , Transplante de Células-Tronco/métodos , Membrana Sinovial/metabolismo , Lesões do Menisco Tibial/complicações , Lesões do Menisco Tibial/fisiopatologia , Cicatrização
7.
J Cell Mol Med ; 24(24): 14453-14466, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33159500

RESUMO

In haemophilia, the recurrence of hemarthrosis leads to irreversible arthropathy termed haemophilic arthropathy (HA). However, HA is a unique form of arthropathy in which resident cells, such as fibroblast-like synoviocytes (FLS), come into direct contact with blood. Therefore, we hypothesized that FLS in HA could have a unique inflammatory signature as a consequence of their contact with blood. We demonstrated with ELISA and ELISPOT analyses that HA-FLS expressed a unique profile of cytokine secretion, which differed from that of non-HA-FLS, mainly consisting of cytokines involved in innate immunity. We showed that unstable cytokine mRNAs were involved in this process, especially through miRNA complexes as confirmed by DICER silencing. A miRNOME analysis revealed that 30 miRNAs were expressed differently between HA and non-HA-FLS, with most miRNAs involved in inflammatory control pathways or described in certain inflammatory diseases, such as rheumatoid arthritis or lupus. Analysis of transcriptomic networks, impacted by these miRNAs, revealed that protein processes and inflammatory pathways were particularly targeted in LPS-induced FLS, and in particular vascularization and osteoarticular modulation pathways in steady-state FLS. Our study demonstrates that the presence of blood in contact with FLS may induce durable miRNA changes that likely participate in HA pathophysiology.


Assuntos
Biomarcadores , Hemartrose/etiologia , Hemartrose/metabolismo , MicroRNAs/genética , Sinoviócitos/metabolismo , Comunicação Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Epigênese Genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hemartrose/patologia , Hemofilia A/complicações , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Proteômica/métodos , Transdução de Sinais
8.
J Thromb Haemost ; 17(11): 1815-1826, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301687

RESUMO

BACKGROUND: Vascular remodeling associated with hemophilic arthropathy (HA) may contribute to bleed propagation, but the mechanisms remain poorly understood. OBJECTIVES: To explore molecular mechanisms of HA and the effects of hemostasis correction on synovial vascular remodeling after joint injury in hypocoagulable mice. METHODS: Factor VIII (FVIII)-deficient mice +/- FVIII treatment and hypocoagulable wild-type mice (Hypo BALB/c) were subjected to subpatellar puncture. Hypo BALB/c mice were treated with warfarin and anti-FVIII before injury, after which warfarin was continued for 2 weeks or reversed +/- continuous anti-FVIII until harvest. Synovial vascularity was analyzed at baseline and 2 to 4 weeks post injury by histology, musculoskeletal ultrasound with power Doppler (microvascular flow), and Evans blue extravasation (vascular permeability). Synovial gene expression and systemic markers of vascular collagen turnover were studied in FVIII-deficient mice by RNA sequencing and enzyme-linked immunosorbent assay. RESULTS: Vascular changes occurred in FVIII-deficient and Hypo BALB/c mice after injury with minimal effect of hemostasis correction. Increased vascular permeability was only significant in FVIII-deficient mice, who exhibited more pronounced vascular remodeling than Hypo BALB/c mice despite similar bleed volumes. FVIII-deficient mice exhibited a strong transcriptional response in synovium that was only partially affected by FVIII treatment and involved genes relating to angiogenesis and extracellular matrix remodeling, with vascular collagen turnover markers detected systemically. CONCLUSIONS: Intact hemostasis at the time of hemarthrosis and during healing are both critical to prevent vascular remodeling, which appears worse with severe and prolonged FVIII deficiency. Unbiased RNA sequencing revealed potential targets for intervention and biomarker development to improve management of HA.


Assuntos
Permeabilidade Capilar , Fator VIII/metabolismo , Hemartrose/metabolismo , Hemofilia A/metabolismo , Membrana Sinovial/irrigação sanguínea , Remodelação Vascular , Animais , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Fator VIII/administração & dosagem , Fator VIII/genética , Feminino , Hemartrose/genética , Hemartrose/fisiopatologia , Hemartrose/prevenção & controle , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemofilia A/fisiopatologia , Hemostasia , Hemostáticos/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Tempo , Remodelação Vascular/efeitos dos fármacos
9.
J Thromb Haemost ; 17(8): 1240-1246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148392

RESUMO

BACKGROUND: Following induced joint hemorrhage, hemophilia B results in the abnormal persistence of iron deposition, inflammation, and neovascularity of the synovial tissue, as well as deterioration of the bone articular surface and strength. Previously, we demonstrated that a factor IX (FIX) replacement protein with extended circulating FIX activity, glycoPEGylated FIX nonacog beta pegol (N9-GP), could improve synovial and osteochondral parameters in F9 knockout mice when administered after joint injury. OBJECTIVE: We explored the use of N9-GP prior to unilateral joint hemorrhage and compared to unmodified recombinant FIX (rFIX). METHODS: Pharmacodynamics, histology, and microcomputed tomography were used to assess the effects of prophylactic administration of glycoPEGylated FIX. RESULTS: In comparison to rFIX, N9-GP significantly improved soft tissue histological parameters, as well as bone outcome at 2 weeks post injury, while performing equally in reduction of blood present in the joint space assessed 1 day after injury. CONCLUSIONS: These results indicate that, in comparison to rFIX, the prophylactic use of extended half-life FIX provides superior protection from bleeding-induced joint damage, manifested by improved correction of histologic parameters.


Assuntos
Fator IX/metabolismo , Hemartrose/tratamento farmacológico , Hemofilia B/tratamento farmacológico , Hemostáticos/administração & dosagem , Articulações/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Animais , Modelos Animais de Doenças , Esquema de Medicação , Fator IX/administração & dosagem , Fator IX/genética , Fator IX/farmacocinética , Meia-Vida , Hemartrose/diagnóstico por imagem , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Hemostáticos/farmacocinética , Articulações/diagnóstico por imagem , Articulações/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polietilenoglicóis/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética
10.
J Orthop Res ; 37(9): 2043-2052, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095777

RESUMO

Anterior cruciate ligament reconstructive surgery can restore biomechanical stability, however, such surgery cannot reliably prevent the onset of post-traumatic osteoarthritis. The aim of this study was to elucidate the molecular response that occurs within the menisci following a surgical injury that allows bleeding into the joint space, and then to investigate the effect of dexamethasone (DEX) on this molecular response. Cell viability studies following acute controlled exposure to blood and blood plus DEX were also conducted. Forty-eight New Zealand white rabbits were randomly allocated into control, sham, surgical, and surgical + DEX groups (each group n = 6). Animals were sacrificed at 48 h and 9 weeks, and menisci were harvested. The messenger RNA (mRNA) expression levels for key inflammatory, and degradative proteins, as well as mRNA levels for autophagy pathway molecules were quantified, and statistically significant changes were described. Meniscal cell viability was calculated by incubating groups of medial and lateral menisci in autologous blood, or autologous blood plus DEX for 48 h (each group n = 4; total of eight medial and eight lateral menisci), and then conducting a histological live/dead assay. Results indicated a significant reduction in only medial meniscal cell viability when the tissue was exposed to blood in combination with DEX. A single administration of DEX following surgery significantly suppresses the elevated molecular expression for key inflammatory and degradative markers within menisci at 48 h and 9 weeks post-surgery. In vitro, autologous blood did not affect cell viability, but addition of DEX uniquely impacted the medial menisci. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2043-2052, 2019.


Assuntos
Dexametasona/administração & dosagem , Hemartrose/metabolismo , Meniscos Tibiais/metabolismo , Animais , Autofagia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Hemartrose/patologia , Injeções Intra-Articulares , Metaloproteinase 3 da Matriz/genética , Meniscos Tibiais/patologia , RNA Mensageiro/análise , Coelhos
11.
Blood ; 132(15): 1593-1603, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30026184

RESUMO

Joint bleeds are common in congenital hemophilia but rare in acquired hemophilia A (aHA) for reasons unknown. To identify key mechanisms responsible for joint-specific bleeding in congenital hemophilia, bleeding phenotypes after joint injury and tail transection were compared in aHA wild-type (WT) mice (receiving an anti-factor VIII [FVIII] antibody) and congenital HA (FVIII-/-) mice. Both aHA and FVIII-/- mice bled severely after tail transection, but consistent with clinical findings, joint bleeding was notably milder in aHA compared with FVIII-/- mice. Focus was directed to thrombin-activatable fibrinolysis inhibitor (TAFI) to determine its potentially protective effect on joint bleeding in aHA. Joint bleeding in TAFI-/- mice with anti-FVIII antibody was increased, compared with WT aHA mice, and became indistinguishable from joint bleeding in FVIII-/- mice. Measurements of circulating TAFI zymogen consumption after joint injury indicated severely defective TAFI activation in FVIII-/- mice in vivo, consistent with previous in vitro analyses in FVIII-deficient plasma. In contrast, notable TAFI activation was observed in aHA mice, suggesting that TAFI protected aHA joints against bleeding. Pharmacological inhibitors of fibrinolysis revealed that urokinase-type plasminogen activator (uPA)-induced fibrinolysis drove joint bleeding, whereas tissue-type plasminogen activator-mediated fibrinolysis contributed to tail bleeding. These data identify TAFI as an important modifier of hemophilic joint bleeding in aHA by inhibiting uPA-mediated fibrinolysis. Moreover, our data suggest that bleed protection by TAFI was absent in congenital FVIII-/- mice because of severely defective TAFI activation, underscoring the importance of clot protection in addition to clot formation when considering prohemostatic strategies for hemophilic joint bleeding.


Assuntos
Carboxipeptidase B2/metabolismo , Hemartrose/etiologia , Hemartrose/metabolismo , Hemofilia A/complicações , Animais , Carboxipeptidase B2/genética , Modelos Animais de Doenças , Deleção de Genes , Hemartrose/genética , Hemofilia A/genética , Hemofilia A/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
12.
Expert Rev Hematol ; 11(6): 449-454, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29722575

RESUMO

INTRODUCTION: The aim of this review is to explore the scientific rationale and evidence for a potential benefit of joint lavage followed by intra-articular injection of hyaluronic acid and/or corticosteroids in patients with severe hemophilic arthropathy of the knee (SHAK). Areas covered: This article is a narrative review of the evidence for potential benefits of joint lavage followed by intra-articular injection of hyaluronic acid and corticosteroids in SHAK compared with osteoarthritis of the knee in non-hemophilia patients. Expert commentary: Although some reports on hemophilic arthropathy with a low-grade of evidence seem to indicate a benefit of joint lavage followed by intra-articular injection of hyaluronic acid and/or corticosteroids in patients with SHAK, the short-lived improvements afforded by hyaluronic acid, and the doubtful benefits of corticosteroids and joint lavage in hemophilia, do not warrant their use in hemophilic patients. The scientific rationale of these procedures is poor and they are not recommended.


Assuntos
Corticosteroides/uso terapêutico , Hemartrose/tratamento farmacológico , Hemofilia A/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Articulação do Joelho , Hemartrose/etiologia , Hemartrose/metabolismo , Hemartrose/patologia , Hemofilia A/complicações , Hemofilia A/metabolismo , Hemofilia A/patologia , Humanos , Injeções Intra-Arteriais
13.
Blood ; 132(10): 1064-1074, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29776906

RESUMO

Hemophilic arthropathy (HA) is a debilitating degenerative joint disease that is a major manifestation of the bleeding disorder hemophilia A. HA typically begins with hemophilic synovitis that resembles inflammatory arthritides, such as rheumatoid arthritis, and frequently results in bone loss in patients. A major cause of rheumatoid arthritis is inappropriate release of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by the TNF-α convertase (TACE; also referred to as ADAM17) and its regulator, iRhom2. Therefore, we hypothesized that iRhom2/ADAM17-dependent shedding of TNF-α also has a pivotal role in mediating HA. Here, we show that addition of blood or its components to macrophages activates iRhom2/ADAM17-dependent TNF-α shedding, providing the premise to study the activation of this pathway by blood in the joint in vivo. For this, we turned to hemophilic FVIII-deficient mice (F8-/- mice), which develop a hemarthrosis following needle puncture injury with synovial inflammation and significant osteopenia adjacent to the affected joint. We found that needle puncture-induced bleeding leads to increased TNF-α levels in the affected joint of F8-/- mice. Moreover, inactivation of TNF-α or iRhom2 in F8-/- mice reduced the osteopenia and synovial inflammation that develops in this mouse model for HA. Taken together, our results suggest that blood entering the joint activates the iRhom2/ADAM17/TNF-α pathway, thereby contributing to osteopenia and synovitis in mice. Therefore, this proinflammatory signaling pathway could emerge as an attractive new target to prevent osteoporosis and joint damage in HA patients.


Assuntos
Proteína ADAM17/metabolismo , Reabsorção Óssea/metabolismo , Proteínas de Transporte/metabolismo , Hemartrose/metabolismo , Hemofilia A/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17/genética , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Fator VIII/genética , Feminino , Hemartrose/genética , Hemartrose/patologia , Hemofilia A/genética , Hemofilia A/patologia , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/genética
14.
AJR Am J Roentgenol ; 210(5): 1141-1147, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470160

RESUMO

OBJECTIVE: The purpose of this study was to assess the feasibility of 3-T susceptibility-weighted imaging (SWI) for detecting intraarticular hemosiderin accumulation in patients with hemophilia. SUBJECTS AND METHODS: Forty-one joints in 24 patients with hemophilia were imaged with conventional MRI and SWI sequences. Two experienced musculoskeletal radiologists and one general radiologist (reader 3) interpreted the images for hemosiderin accumulation. The final decision was determined in consensus by readers 1 and 2 using both conventional MRI and SWI sequences. The diagnostic consistencies of each MRI sequence with the reference and pairwise agreements between interpreters were assessed. RESULTS: For conventional MRI sequences, the diagnostic consistencies of the two experienced musculoskeletal radiologists with the reference were substantial (κ = 0.63 and 0.62), whereas the consistency of the general radiologist with the reference was moderate (κ = 0.47). The SWI interpretations of all readers had almost perfect agreement with the reference (κ = 1, κ = 1, κ = 0.97). Interobserver agreement also improved at SWI interpretations. CONCLUSION: SWI contributes to more accurate grading of intraarticular hemosiderin accumulation than is achieved with conventional MRI sequences.


Assuntos
Hemartrose/diagnóstico por imagem , Hemartrose/metabolismo , Hemofilia A/diagnóstico por imagem , Hemofilia A/metabolismo , Hemossiderina/metabolismo , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos
15.
Haemophilia ; 23(4): e294-e300, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28439941

RESUMO

INTRODUCTION: Progressive arthropathy caused by recurrent joint bleeds is a severe complication in haemophilia. AIM: We investigated whether biomarkers of cartilage and bone degradation, and inflammation were altered in haemophilia patients and whether these biomarkers could identify haemophilia patients with arthropathy. METHODS: Serum from 35 haemophilia patients with varying degrees of arthropathy and 43 age- and gender-matched control subjects were analysed. Biomarkers of cartilage degradation (C2M, COMP, CTX-II, ADAMTS5), cartilage formation (PRO-C2), bone formation (PINP), bone resorption (CTX-I) and inflammation (hsCRP, CRPM) were measured by ELISA. Arthropathy was assessed by radiological evaluation (Pettersson score) and physical examination (Gilbert score). RESULTS: In patients with haemophilia, cartilage degradation, measured by C2M, CTX-II and COMP, was increased by 25% (P < 0.05) compared with control subjects. Levels of the cartilage degradation enzyme, ADAMTS5, were 10% lower in haemophilia patients (P < 0.05). Bone formation (PINP) was reduced by 25% (P < 0.05) in haemophilia patients, whereas bone resorption (CTX-I) was increased by 30% (P < 0.001). Acute inflammation (hsCRP) was increased by 50% (P < 0.01), whereas chronic inflammation (CRPM) was decreased by 25% (P < 0.0001). The hsCRP/CRPM ratio was 60% higher (P < 0.001) in haemophilia patients relative to control subjects. A biomarker panel combining C2M, CRPM, and ADAMTS5 could distinguish haemophilia patients from control subjects with 85.3% accuracy (P < 0.0001). We found no strong correlation between biomarkers and radiological and physical examination of the joint. CONCLUSION: Biomarkers detect increased cartilage and bone degradation, and altered inflammatory activity in haemophilia patients with arthropathy. These biomarkers could potentially be used to identify patients with progressing joint disease.


Assuntos
Biomarcadores/sangue , Hemartrose/sangue , Hemartrose/complicações , Hemofilia A/complicações , Articulações/patologia , Adulto , Reabsorção Óssea/complicações , Cartilagem/metabolismo , Diagnóstico Diferencial , Feminino , Hemartrose/diagnóstico , Hemartrose/metabolismo , Humanos , Inflamação/complicações , Masculino , Sensibilidade e Especificidade
16.
Haemophilia ; 23(4): 521-527, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28429865

RESUMO

Haemophilia is characterized by a spontaneous bleeding tendency, affecting mainly the synovial joints. Recurrent joint bleeds induce a cascade of inflammatory as well as degenerative processes injuring synovium, cartilage and bone. These processes affect each other and may occur in parallel and/or sequentially. Clinically, the effects of joint bleeds are heterogeneous. A marked variability in joint damage is observed in patients with a similar bleeding history. Also late stage effects differ with some patients developing chronic synovitis, and others suffering from osteochondral degeneration called haemophilic arthropathy. This article reviews the current understanding of the pathogenesis of blood-induced joint damage, elaborates on potential explanations for the differential effects of a bleed, and discusses challenges for future research.


Assuntos
Hemartrose/complicações , Hemofilia A/complicações , Osso e Ossos/patologia , Cartilagem/metabolismo , Hemartrose/metabolismo , Hemartrose/patologia , Humanos , Membrana Sinovial/patologia
17.
Blood ; 129(15): 2161-2171, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28039188

RESUMO

Wound healing requires interactions between coagulation, inflammation, angiogenesis, cellular migration, and proliferation. Healing in dermal wounds of hemophilia B mice is delayed when compared with hemostatically normal wild-type (WT) mice, with abnormal persistence of iron deposition, inflammation, and neovascularity. We observed healing following induced joint hemorrhage in WT and factor IX (FIX) knockout (FIX-/-) mice, examining also parameters previously studied in an excisional skin wound model. Hemostatically normal mice tolerated this joint bleeding challenge, cleared blood from the joint, and healed with minimal pathology, even if additional autologous blood was injected intra-articularly at the time of wounding. Following hemarthrosis, joint wound healing in hemophilia B mice was impaired and demonstrated similar abnormal histologic features as previously described in hemophilic dermal wounds. Therefore, studies of pathophysiology and therapy of hemophilic joint bleeding performed in hemostatically normal animals are not likely to accurately reflect the healing defect of hemophilia. We additionally explored the hypothesis that the use of a FIX replacement protein with extended circulating FIX activity could improve synovial and osteochondral wound healing in hemophilic mice, when compared with treatment with unmodified recombinant FIX (rFIX) in the established joint bleeding model. Significantly improved synovial wound healing and preservation of normal osteochondral architecture are achieved by extending FIX activity after hemarthrosis using glycoPEGylated FIX when compared with an equivalent dose of rFIX. These results suggest that treating joint bleeding only until hemostasis is achieved may not result in optimal joint healing, which is improved by extending factor activity.


Assuntos
Fator IX , Hemartrose , Hemofilia B , Articulações , Pele , Cicatrização , Animais , Modelos Animais de Doenças , Fator IX/genética , Fator IX/farmacologia , Hemartrose/tratamento farmacológico , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Hemofilia B/metabolismo , Articulações/lesões , Articulações/metabolismo , Camundongos , Camundongos Knockout , Pele/lesões , Pele/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
18.
Haemophilia ; 22(6): e527-e536, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27704689

RESUMO

INTRODUCTION: Joint haemorrhage is the principal clinical manifestation of haemophilia frequently leading to advanced arthropathy and arthrofibrosis, resulting in severe disability. The degree and prevalence of arthrofibrosis in hemophilic arthropathy is more severe than in other forms of arthropathy. Expression of connective tissue growth factor (CTGF) has been linked to many fibrotic diseases, but has not been studied in the context of haemophilic arthropathy. AIM: We aim to compare synovial tissues histologically from haemophilia and osteoarthritis patients with advanced arthropathy in order to compare expression of proteins that are possibly aetiologic in the development of arthrofibrosis. METHODS: Human synovial tissues were obtained from 10 haemophilia and 10 osteoarthritis patients undergoing joint surgery and processed for histology and immunohistochemistry. RESULTS: All samples from haemophilia patients had synovitis with hypertrophy and hyperplasia of synovial villi. Histologically, synovial tissues contained hyperplastic villi with increased cellularity and abundant haemosiderin- and ferritin-pigmented macrophage-like cells (HMCs), with a perivascular localization in the sub-surface layer. CTGF staining was observed in the surface layer and sub-surface layer in all haemophilia patients, exclusively co-localizing with HMCs. Quantification showed that the extent of CTGF-positive areas was correlated with the degree of detection of HMCs. CTGF was not observed in any of the samples from osteoarthritis patients. CONCLUSION: Using histological analysis, we showed that CTGF expression is elevated in haemophilia patients with arthrofibrosis and absent in patients with osteoarthritis. Additionally, we found that CTGF is always associated with haemosiderin-pigmented macrophage-like cells, which suggests that CTGF is produced by synovial A cells following the uptake of blood breakdown products.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Hemartrose/metabolismo , Hemofilia A/metabolismo , Artropatias/metabolismo , Adulto , Feminino , Hemartrose/complicações , Hemofilia A/complicações , Humanos , Artropatias/etiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Am J Sports Med ; 43(11): 2822-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362437

RESUMO

BACKGROUND: Sport injuries of the knee often lead to posttraumatic arthritis. In addition to direct damage of the cartilage, trauma-associated intra-articular bleeding may cause hemarthrosis. Both blood exposure and trauma are known to induce cell death and inflammation and to enhance proteoglycan release in cartilage. HYPOTHESIS: Blood exposure increases chondrocyte death as well as inflammatory and degenerative processes in traumatized cartilage. STUDY DESIGN: Controlled laboratory study. METHODS: Human macroscopically intact osteoarthritic (OA) cartilage explants were impacted by a drop-tower system (0.59 J) and cultivated with or without 10% blood. Interactive effects were studied concerning cell survival, gene expression, and the release of mediators over 24 hours and 96 hours. To evaluate the effects of trauma and hemarthrosis in vivo, a newly established blunt cartilage trauma model in the rabbit was used. Treatment of the knee joints of mature New Zealand White rabbits consisted of the following groups: control (C), arthrotomy (A), arthrotomy with cartilage trauma (AT; 1.0 J), and arthrotomy with cartilage trauma and blood injection (ATH). After 1 and 12 weeks, inflammatory mediators in the synovial fluid and histological changes of the cartilage were determined, and immunohistological staining was performed. RESULTS: The in vitro studies revealed a significant additional or synergistic effect of blood exposure on trauma-induced chondrocyte death, interleukin (IL)-1ß and prostaglandin-E2 (PGE2) release, and matrix metalloproteinase (MMP)/pro-MMP level. Singular arthrotomy in vivo induced a temporary inflammation. Histologically, cartilage trauma caused significant OA changes that were not aggravated by an additional hemarthrosis. Trauma led to a persistent deposition of terminal complement complex (TCC), being enhanced by hemarthrosis. However, trauma-induced formation of osteophytes and arthrotomy-induced elevation of tumor necrosis factor-α release were reduced by hemarthrosis. CONCLUSION: While blood exposure clearly aggravated trauma-induced OA processes in the in vitro model, a singular blood injection revealed heterogeneous effects in vivo, enhancing TCC deposition but reducing trauma-induced osteophyte formation while the histological score of traumatized cartilage was not further impaired. CLINICAL RELEVANCE: The results of this study indicate that a singular, limited bleeding event might not exacerbate early trauma-induced cartilage degeneration in joint injuries. An early removal of intra-articular blood may not prevent the final resulting cartilage damage.


Assuntos
Cartilagem Articular/lesões , Condrócitos/patologia , Inflamação/patologia , Articulação do Joelho/patologia , Idoso , Animais , Morte Celular , Sobrevivência Celular , Dinoprostona/metabolismo , Feminino , Expressão Gênica , Hemartrose/metabolismo , Humanos , Interleucina-1beta/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Proteoglicanas/metabolismo , Coelhos , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Am J Hematol ; 90(11): 1027-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26257191

RESUMO

Hemophilic arthropathy is a debilitating condition that can develop as a consequence of frequent joint bleeding despite adequate clotting factor replacement. The mechanisms leading to repeated spontaneous bleeding are unknown. We investigated synovial, vascular, stromal, and cartilage changes in response to a single induced hemarthrosis in the FVIII-deficient mouse. We found soft-tissue hyperproliferation with marked induction of neoangiogenesis and evolving abnormal vascular architecture. While soft-tissue changes were rapidly reversible, abnormal vascularity persisted for months and, surprisingly, was also seen in uninjured joints. Vascular changes in FVIII-deficient mice involved pronounced remodeling with expression of α-Smooth Muscle Actin (SMA), Endoglin (CD105), and vascular endothelial growth factor, as well as alterations of joint perfusion as determined by in vivo imaging. Vascular architecture changes and pronounced expression of α-SMA appeared unique to hemophilia, as these were not found in joint tissue obtained from mouse models of rheumatoid arthritis and osteoarthritis and from patients with the same conditions. Evidence that vascular changes in hemophilia were significantly associated with bleeding and joint deterioration was obtained prospectively by dynamic in vivo imaging with musculoskeletal ultrasound and power Doppler of 156 joints (elbows, knees, and ankles) in a cohort of 26 patients with hemophilia at baseline and during painful episodes. These observations support the hypothesis that vascular remodeling contributes significantly to bleed propagation and development of hemophilic arthropathy. Based on these findings, the development of molecular targets for angiogenesis inhibition may be considered in this disease.


Assuntos
Fator VIII/genética , Hemartrose/patologia , Hemofilia A/patologia , Neovascularização Patológica/patologia , Remodelação Vascular , Actinas/genética , Actinas/metabolismo , Animais , Tornozelo/irrigação sanguínea , Tornozelo/patologia , Modelos Animais de Doenças , Articulação do Cotovelo/irrigação sanguínea , Articulação do Cotovelo/metabolismo , Articulação do Cotovelo/patologia , Endoglina , Fator VIII/metabolismo , Expressão Gênica , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia A/genética , Hemofilia A/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Articulação do Joelho/irrigação sanguínea , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...