Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.067
Filtrar
1.
Methods Mol Biol ; 2839: 131-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008252

RESUMO

Heme o is an Fe-porphyrin involved in the majority of aerobic respiration pathways found in all three domains of life. In eukaryotes and most aerobic prokaryotes, heme o functions solely as the precursor for the synthesis of heme a, a necessary cofactor for most heme-copper terminal oxidases. In some prokaryotes, such as Escherichia coli (E. coli), heme o can serve as a cofactor for heme-copper oxidases instead of heme a. Given its role as a key substrate or cofactor, purified heme o promises to be a valuable resource for the study of heme-copper oxidase assembly and activity. However, commercially available heme o is sold in limited quantities at a relatively high cost (compared to the prototypical heme b), making the use of heme o purchased from suppliers unfeasible for such studies. In this chapter, we present step-by-step methods both for heme o isolation from E. coli overexpressing heme o synthase and for HPLC analysis of cellular hemes (i.e., heme o and heme b).


Assuntos
Escherichia coli , Heme , Heme/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Methods Mol Biol ; 2839: 151-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008253

RESUMO

Heme b (iron protoporphyrin IX) is an essential but potentially cytotoxic cofactor, signaling molecule, and nutritional source of iron. Its importance in cell biology and metabolism is underscored by the fact that numerous diseases, including various cancers, neurodegenerative disorders, infectious diseases, anemias, and porphyrias, are associated with the dysregulation of heme synthesis, degradation, trafficking, and/or transport. Consequently, methods to measure, image, and quantify heme in cells are required to better understand the physiology and pathophysiology of heme. Herein, we describe fluorescence-based protocols to probe heme bioavailability and trafficking dynamics using genetically encoded fluorescent heme sensors in combination with various modalities, such as confocal microscopy, flow cytometry, and microplate readers. Additionally, we describe a protocol for measuring total heme and its precursor protoporphyrin IX using a fluorometric assay that exploits porphyrin fluorescence. Together, the methods described enable the monitoring of total and bioavailable heme to study heme homeostatic mechanisms in virtually any cell type and organism.


Assuntos
Fluorometria , Heme , Heme/metabolismo , Fluorometria/métodos , Humanos , Protoporfirinas/metabolismo , Citometria de Fluxo/métodos , Microscopia Confocal/métodos , Disponibilidade Biológica , Animais
3.
Methods Mol Biol ; 2839: 195-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008254

RESUMO

Recombinant expression and biogenesis of cytochrome c species is a simple and efficient method for the production of holocytochrome c species, thus presenting an avenue for the study of cytochrome c or the cytochrome c biogenesis pathways responsible for heme attachment. Here, we describe a method for recombinant E. coli production of holocytochrome c utilizing the System I (CcmABCDEFGH) bacterial cytochrome c biogenesis pathway, followed by analysis of cytochrome c species by cell lysis and heme stain.


Assuntos
Citocromos c , Escherichia coli , Heme , Proteínas Recombinantes , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Heme/metabolismo , Heme/biossíntese
4.
Methods Mol Biol ; 2839: 213-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008255

RESUMO

The utilization of ultra-performance liquid chromatography (UPLC) to analyze the various intermediates in the heme biosynthetic pathway is presented. The first product, ALA, was derivatized to a highly fluorescent pyrrolizine; PBG, the second intermediate, was enzymatically converted to uroporphyrinogen, and all the porphyrinogen intermediates were oxidized in acid to form fluorescent porphyrins. Heme was measured as hemin. The stable porphyrin forms of the intermediates, are then resolved and quantified by UPLC. Further details about the various methods are discussed to promote successful UPLC analyses. Method variations that may be preferable in certain situations are also presented.


Assuntos
Heme , Heme/biossíntese , Heme/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ácido Aminolevulínico/metabolismo , Hemina/metabolismo , Hemina/química
5.
Front Immunol ; 15: 1416820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947312

RESUMO

Background: Traumatic and thermal injuries result in a state of systemic immune suppression, yet the mechanisms that underlie its development are poorly understood. Released from injured muscle and lysed red blood cells, heme is a damage associated molecular pattern with potent immune modulatory properties. Here, we measured plasma concentrations of total heme in over 200 traumatic and thermally-injured patients in order to examine its relationship with clinical outcomes and post-injury immune suppression. Methods: Blood samples were collected from 98 burns (≥15% total body surface area) and 147 traumatically-injured (injury severity score ≥8) patients across the ultra-early (≤1 hour) and acute (4-72 hours) post-injury settings. Pro-inflammatory cytokine production by lipopolysaccharide (LPS) challenged whole blood leukocytes was studied, and plasma concentrations of total heme, and its scavengers haptoglobin, hemopexin and albumin measured, alongside the expression of heme-oxygenase-1 (HO-1) in peripheral blood mononuclear cells (PBMCs). LPS-induced tumour necrosis factor-alpha (TNF-α) production by THP-1 cells and monocytes following in vitro heme treatment was also examined. Results: Burns and traumatic injury resulted in significantly elevated plasma concentrations of heme, which coincided with reduced levels of hemopexin and albumin, and correlated positively with circulating levels of pro and anti-inflammatory cytokines. PBMCs isolated from trauma patients 4-12 and 48-72 hours post-injury exhibited increased HO-1 gene expression. Non-survivors of burn injury and patients who developed sepsis, presented on day 1 with significantly elevated heme levels, with a difference of 6.5 µM in heme concentrations corresponding to a relative 52% increase in the odds of post-burn mortality. On day 1 post-burn, heme levels were negatively associated with ex vivo LPS-induced TNF-α and interleukin-6 production by whole blood leukocytes. THP-1 cells and monocytes pre-treated with heme exhibited significantly reduced TNF-α production following LPS stimulation. This impairment was associated with decreased gene transcription, reduced activation of extracellular signal-regulated kinase 1/2 and an impaired glycolytic response. Conclusions: Major injury results in elevated plasma concentrations of total heme that may contribute to the development of endotoxin tolerance and increase the risk of poor clinical outcomes. Restoration of the heme scavenging system could be a therapeutic approach by which to improve immune function post-injury.


Assuntos
Queimaduras , Heme , Humanos , Heme/metabolismo , Queimaduras/sangue , Queimaduras/imunologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/sangue , Adulto Jovem , Idoso , Células THP-1 , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Biomarcadores/sangue , Lipopolissacarídeos , Heme Oxigenase-1/sangue
6.
Protein Sci ; 33(8): e5113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980168

RESUMO

Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry. Here, we use a set of de novo designed mono-heme and di-heme soluble and membrane proteins to delineate the contributions of electrostatic micro-environments and dielectric properties of the surrounding protein medium on the inter-heme redox cooperativity that we have previously reported. Experimentally, we find that the two heme sites in both the water-soluble and membrane constructs have broadly equivalent redox potentials in isolation, in agreement with Poisson-Boltzmann Continuum Electrostatics calculations. BioDC, a Python program for the estimation of electron transfer energetics and kinetics within multiheme cytochromes, also predicts equivalent heme sites, and reports that burial within the low dielectric environment of the membrane strengthens heme-heme electrostatic coupling. We conclude that redox cooperativity in our diheme cytochromes is largely driven by heme electrostatic coupling and confirm that this effect is greatly strengthened by burial in the membrane. These results demonstrate that while our de novo proteins present minimalist, new-to-nature constructs, they enable the dissection and microscopic examination of processes fundamental to the function of vital, yet complex, bioenergetic assemblies.


Assuntos
Heme , Oxirredução , Heme/química , Heme/metabolismo , Solubilidade , Água/química , Água/metabolismo , Citocromos/química , Citocromos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Eletricidade Estática , Engenharia de Proteínas
7.
Methods Mol Biol ; 2839: 225-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008256

RESUMO

Radiolabeling enables the quantitation of newly synthesized heme and porphyrin, allowing us to distinguish heme synthesis rates from total cellular heme. Here, we describe a protocol for labeling heme with 14C-glycine or ALA and the sequential extraction of heme and porphyrin from the same samples for quantitation by liquid scintillation.


Assuntos
Ácido Aminolevulínico , Radioisótopos de Carbono , Glicina , Heme , Porfirinas , Heme/química , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Radioisótopos de Carbono/química , Porfirinas/química , Glicina/química , Marcação por Isótopo/métodos , Humanos
8.
Methods Mol Biol ; 2839: 113-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008251

RESUMO

Traditional studies of cellular metabolism have relied on the use of radioisotopes. These have clear disadvantages associated with safety and waste generation. Furthermore, detection of the labeled species by scintillation counting provides only a quantification of its presence or absence. The use of stable isotopes, by contrast, allows the application of powerful, orthogonal spectroscopic approaches such as nuclear magnetic resonance spectroscopy (NMR) and various mass spectrometric methods. Using stable isotope labeling to study heme metabolism requires integrating methods for (a) generating the heme in labeled forms, (b) cultivating and quantifying the organism of choice in chemically defined media, to which labeled compounds can be added, (c) recovering cellular components and/or spent growth media, and (d) analyzing these materials for the labeled species using spectroscopic and mass spectrometric methods. These methods are summarized here in the context of Bacteroides thetaiotaomicron, a generally nonpathogenic anaerobe and heme auxotroph.


Assuntos
Bacteroides thetaiotaomicron , Heme , Espectrometria de Massas , Heme/metabolismo , Espectrometria de Massas/métodos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética/métodos , Marcação por Isótopo/métodos , Meios de Cultura/química
9.
Ecotoxicol Environ Saf ; 281: 116653, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964066

RESUMO

Nitrite is the most common nitrogen-containing compound in nature. It is widely used in food processing like in pickled foods so it has caused widespread public concern about the safety of nitrites due to the formation of nitrosamine, a carcinogen, during the food process. Recent research has shown nitrite has therapeutic potential for cardiovascular disease due to its similar function to NO, yet the safety of oral nitrite and the physiological and biochemical responses induced after oral administration still require further validation. In addition, the relationship between nitrite and glycolipid metabolism still needs to be elucidated. As aquatic animals, fish are more susceptible to nitrite compared to mammals. Herein, we utilized tilapia (Oreochromis niloticus) as an animal model to explore the relationship between nitrite and glycolipid metabolism in organisms. In the present study, we found that nitrite elicited a hypoxic metabolic response in tilapia and deepened this metabolic response under the co-stress of the pathogenic bacterium S.ag (Streptococcus agalactiae). In addition, nitrite-induced elevation of MetHb (Methemoglobin) and its by-product heme was involved in the metabolic response to nitrite-induced hypoxia through the HO/CO pathway, which has not yet been mentioned in previous studies. Moreover, heme affected hepatic metabolic responses through the ROS-ER stress-VLDL pathway. These findings, for the first time, reveal that nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. It not only provides new insights into the results of nitrite on the body but also is beneficial for developing healthy strategies for fish farming.


Assuntos
Glicolipídeos , Heme , Nitritos , Animais , Nitritos/toxicidade , Ciclídeos/metabolismo , Doenças Metabólicas/induzido quimicamente , Poluentes Químicos da Água/toxicidade
10.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956406

RESUMO

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Kluyveromyces , Kluyveromyces/genética , Edição de Genes/métodos , Plasmídeos/genética , Biologia Sintética/métodos , Heme/metabolismo , Heme/genética , Heme/biossíntese
11.
Subcell Biochem ; 104: 33-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963482

RESUMO

Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.


Assuntos
Catalase , Evolução Molecular , Catalase/química , Catalase/genética , Catalase/metabolismo , Humanos , Animais , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Heme/química , Heme/metabolismo
12.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892012

RESUMO

A key element for the cost-effective development of cultured meat is a cell line culturable in serum-free conditions to reduce production costs. Heme supplementation in cultured meat mimics the original meat flavor and color. This study introduced a bacterial extract generated from Corynebacterium that was selected for high-heme expression by directed evolution. A normal porcine cell line, PK15, was used to apply the bacterial heme extract as a supplement. Consistent with prior research, we observed the cytotoxicity of PK15 to the heme extract at 10 mM or higher. However, after long-term exposure, PK15 adapted to tolerate up to 40 mM of heme. An RNA-seq analysis of these heme-adapted PK15 cells (PK15H) revealed a set of altered genes, mainly involved in cell proliferation, metabolism, and inflammation. We found that cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), lactoperoxidase (LPO), and glutathione peroxidase 5 (GPX5) were upregulated in the PK15H heme dose dependently. When we reduced serum serially from 2% to serum free, we derived the PK15H subpopulation that was transiently maintained with 5-10 mM heme extract. Altogether, our study reports a porcine cell culturable in high-heme media that can be maintained in serum-free conditions and proposes a marker gene that plays a critical role in this adaptation process.


Assuntos
Heme , Animais , Suínos , Heme/metabolismo , Linhagem Celular , Meios de Cultura Livres de Soro , Proliferação de Células/efeitos dos fármacos , Carne/análise , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Técnicas de Cultura de Células/métodos , Carne in vitro
13.
Front Cell Infect Microbiol ; 14: 1421018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938884

RESUMO

Introduction: Porphyromonas gingivalis and Porphyromonas endodontalis belong to the Bacteroidota phylum. Both species inhabit the oral cavity and can be associated with periodontal diseases. To survive, they must uptake heme from the host as an iron and protoporphyrin IX source. Among the best-characterized heme acquisition systems identified in members of the Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played by the hemophore-like HmuY (HmuYPg) protein. Methods: Theoretical analysis of selected HmuY proteins and spectrophotometric methods were employed to determine the heme-binding mode of the P. endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth phenotype and gene expression analysis of P. endodontalis were employed to reveal the importance of the HmuYPe and Hmu system for this bacterium. Results: Unlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron coordination, other known HmuY homologs use two methionines in this process. P. endodontalis HmuYPe is the first characterized representative of the HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe to sequester heme directly from serum albumin and Tannerella forsythia HmuYTf, the HmuY homolog which uses two methionines for heme-iron coordination. In contrast to HmuYPg, which sequesters heme directly from methemoglobin, HmuYPe may bind heme only after the proteolytic digestion of hemoglobin. Conclusions: We hypothesize that differences in components of the Hmu system and structure-based properties of HmuY proteins may evolved allowing different adaptations of Porphyromonas species to the changing host environment. This may add to the superior virulence potential of P. gingivalis over other members of the Bacteroidota phylum.


Assuntos
Proteínas de Bactérias , Heme , Porphyromonas endodontalis , Porphyromonas gingivalis , Tannerella forsythia , Heme/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Porphyromonas endodontalis/metabolismo , Porphyromonas endodontalis/genética , Humanos , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Ferro/metabolismo
14.
Structure ; 32(6): 650-651, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848681

RESUMO

In a recent issue of Nature, Barends et al.1 studied the photodissociation of carboxymyoglobin with ultrafast laser pump-probe serial femtosecond crystallography experiments. They observed significant differences in heme protein structural dynamics for biologically relevant 1-photon excitation relative to high excitation leading to the absorption of several photons per heme.


Assuntos
Mioglobina , Mioglobina/química , Conformação Proteica , Heme/química , Cristalografia por Raios X , Luz , Fótons , Modelos Moleculares
15.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928065

RESUMO

Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders.


Assuntos
Domínio Catalítico , Ferroquelatase , Heme , Simulação de Dinâmica Molecular , Protoporfirinas , Ferroquelatase/metabolismo , Ferroquelatase/química , Humanos , Fosforilação , Heme/metabolismo , Heme/química , Protoporfirinas/química , Protoporfirinas/metabolismo , Ligação Proteica , Sítios de Ligação , Termodinâmica
16.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928500

RESUMO

Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph Methylacidiphilium infernorum. Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively. However, unlike cytoglobin and cytochrome c, the heme iron of HGb-I is altered by lipids in ferrous as well as ferric oxidation states. The apparent affinity for lipids in this thermally stable globin is highly pH-dependent but essentially temperature-independent within the range of 20-60 °C. We propose a mechanism to explain these observations, in which lipid binding and stability of the distal endogenous ligand are juxtaposed as a function of temperature. Additionally, we propose that these coupled equilibria may constitute a mechanism through which this acidophilic thermophile senses the pH of its environment.


Assuntos
Temperatura , Concentração de Íons de Hidrogênio , Globinas/química , Globinas/metabolismo , Lipídeos/química , Heme/metabolismo , Heme/química , Conformação Proteica , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
17.
Genes (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927630

RESUMO

LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.


Assuntos
Endopeptidase Clp , Heme , Camundongos Knockout , Mitocôndrias , Proteínas Mitocondriais , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Heme/metabolismo , Biossíntese de Proteínas , Humanos , Membranas Mitocondriais/metabolismo , Estresse Fisiológico
18.
J Phys Chem B ; 128(25): 5935-5949, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38864552

RESUMO

Lys-ligated cytochromes make up an emerging family of heme proteins. Density functional theory calculations on the amine/imidazole-ligated c-type ferric heme were employed to develop force-field parameters for molecular dynamics (MD) simulations of structural and dynamic features of these proteins. The new force-field parameters were applied to the alkaline form of yeast iso-1 cytochrome c to rationalize discrepancies resulting from distinct experimental conditions in prior structural studies and to provide insights into the mechanisms of the alkaline transition. Our simulations have revealed the dynamic nature of Ω-loop C in the Lys-ligated protein and its unfolding in the Lys-ligated conformer having this loop in the same position as in the native Met-ligated protein. The proximity of Tyr67 or Tyr74 to the Lys ligand of ferric heme iron suggests a possible mechanism of the backward alkaline transition where a proton donor Tyr assists in Lys dissociation. The developed force-field parameters will be useful in structural and dynamic characterization of other native or engineered Lys-ligated heme proteins.


Assuntos
Citocromos c , Lisina , Simulação de Dinâmica Molecular , Lisina/química , Citocromos c/química , Citocromos c/metabolismo , Heme/química , Teoria da Densidade Funcional , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/química , Ligantes , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Biochemistry ; 63(13): 1636-1646, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888931

RESUMO

The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.


Assuntos
5-Aminolevulinato Sintetase , Anemia Sideroblástica , Humanos , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/deficiência , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Mutação com Perda de Função , Estabilidade Enzimática , Heme/metabolismo , Heme/química , Porfirias/genética , Porfirias/metabolismo , Modelos Moleculares , Mutação , Protoporfiria Eritropoética
20.
Int J Biol Macromol ; 273(Pt 1): 132793, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830492

RESUMO

Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Inteínas , NADPH-Ferri-Hemoproteína Redutase , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Heme/química , Heme/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Domínios Proteicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...