Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.966
Filtrar
1.
Sci Rep ; 14(1): 14318, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906910

RESUMO

Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.


Assuntos
Hemeproteínas , Plasmodium falciparum , Hemeproteínas/metabolismo , Hemeproteínas/química , Plasmodium falciparum/crescimento & desenvolvimento , Humanos , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/diagnóstico , Microscopia Eletrônica de Varredura/métodos
2.
Acta Parasitol ; 69(2): 1244-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705947

RESUMO

PURPOSE: Artemisinin combination therapies, the first-line antimalarials in Nigeria, have reportedly suffered multiple failures in malaria treatment, hence the search for novel combination of other compounds. Methyl gallate and palmatine have been reported to exhibit antiplasmodial activities but the antimalarial activity of their combination has not been evaluated. Therefore, the evaluation of the combination of methyl gallate and palmatine for antimalarial activity in vitro and in vivo in the presence of piperine was carried out. MATERIALS AND METHODS: The inhibitory potential of methyl gallate and palmatine combination on ß-hematin (hemozoin) formation was studied in vitro. Also, the antimalarial activity of methyl gallate and palmatine combination with/without a bioenhancer (piperine) was evaluated in Plasmodium berghei NK65-infected mice. RESULTS: Methyl gallate and palmatine in the ratio 3:2 acted synergistically in vitro and had the highest inhibitory effect (IC50 = 0.73 µg/mL) on ß-hematin (hemozoin) formation. The 3:2 combination of methyl gallate and palmatine exhibited no antimalarial activity in vivo in the absence of piperine but caused reduction in parasitemia that exceeded 40% in the presence of piperine at the dose of 25 mg/kg body weight on days 6 and 8 post-inoculation in mice. CONCLUSION: The 3:2 combination of methyl gallate and palmatine in the presence of piperine exhibited antimalarial activity in vivo, possibly by synergistic inhibition of hemozoin formation which may cause accumulation of haem within the food vacuole of Plasmodium spp. and its death.


Assuntos
Alcaloides , Antimaláricos , Benzodioxóis , Alcaloides de Berberina , Sinergismo Farmacológico , Ácido Gálico , Malária , Piperidinas , Plasmodium berghei , Alcamidas Poli-Insaturadas , Animais , Alcamidas Poli-Insaturadas/farmacologia , Antimaláricos/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Alcaloides/farmacologia , Plasmodium berghei/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Parasitemia/tratamento farmacológico , Concentração Inibidora 50 , Hemeproteínas
3.
Inorg Chem ; 63(21): 9907-9918, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38754069

RESUMO

Nitrobindins (Nbs) are all-ß-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.


Assuntos
Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Ácido Peroxinitroso , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Mycobacterium tuberculosis/química , Hemeproteínas/química , Hemeproteínas/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Termodinâmica
4.
J Inorg Biochem ; 256: 112575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678912

RESUMO

Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and H2O2 but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.


Assuntos
Escherichia coli O157 , Heme Oxigenase (Desciclizante) , Proteínas Ligantes de Grupo Heme , Heme , Escherichia coli O157/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Heme/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Hemeproteínas/metabolismo , Hemeproteínas/genética , Peróxido de Hidrogênio/metabolismo , Oxirredução , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo
5.
J Ethnopharmacol ; 331: 118241, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670400

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Andrographis paniculata (AP) ((Burm f.) Wall. ex Nees) is a medicinal plant, documented for its folkloric use in the treatment of malaria. AIM: This study was designed to determine the potency of extract and fractions of A. paniculata (AP) as a curative, both for susceptible and resistant malaria and to also determine the plant's mechanism of action. This study was also designed to determine whether AP extract and its most potent fraction will mitigate infection-mediated mitochondrial dysfunction, and to assess the phytochemical constituents of the most potent fraction. MATERIALS AND METHODS: n-Hexane, dichloromethane, ethylacetate and methanol were used to partition the methanol extract of A. paniculata. Graded doses of these extract and fractions were used to treat mice infected with chloroquine-sensitive strain of P. berghei in a curative model. The most potent fraction was used to treat mice infected with resistant (ANKA strain) P. berghei. Inhibition of hemozoin formation, reversal of mitochondrial dysfunction and antiinflammatory potentials were determined. A combination of ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry and nuclear magnetic resonance spectroscopy were used for chemical analysis. RESULTS: Microscopy revealed that the dichloromethane fraction decreased the parasite burden the most, and inhibition of the hemozoin formation is one of its mechanisms of action. The dichloromethane fraction reversed parasite-induced mitochondrial pore opening in the host, enzyme-dependent ATP hydrolysis and peroxidation of host mitochondrial membrane phospholipids as well as its antiinflammatory potentials. The UPLC-qTOF-MS report and NMR fingerprints of the dichloromethane fraction of A. paniculata yielded fourteen compounds of which sibiricinone C was identified from the plant for the first time. CONCLUSION: Fractions of A. paniculata possess antiplasmodial effects with the dichloromethane fraction having the highest potency. The potent effect of this fraction may be attributed to the phytochemicals present because it contains terpenes implicated with antimalarial and antiinflammatory activities.


Assuntos
Andrographis , Antimaláricos , Malária , Extratos Vegetais , Plasmodium berghei , Animais , Plasmodium berghei/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Andrographis/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Hemeproteínas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Feminino
6.
J Biol Chem ; 300(5): 107250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569935

RESUMO

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.


Assuntos
Heme , Ligação Proteica , Humanos , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Heme/metabolismo , Heme/química , Hemeproteínas/metabolismo , Hemeproteínas/química , Hemeproteínas/genética , Modelos Moleculares , Estrutura Terciária de Proteína
7.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609367

RESUMO

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Assuntos
Hemeproteínas , Synechocystis , Heme , Zinco , Histidina , Hemeproteínas/genética , Synechocystis/genética , Carbono , Ferro
8.
Food Chem ; 448: 139111, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547712

RESUMO

Heme proteins and their derivatives play important roles in inducing lipid oxidation to produce volatile compounds during bacon drying. This study investigated the effects of heme proteins and their derivatives (hemoglobin, myoglobin, nitrosylmyoglobin, hemin, Fe2+, and Fe3+) on lipid and volatiles profiles in the washed pig muscle (WPM) model. The results of the study indicated that the inducers primarily caused the oxidation of glycerophospholipids. Furthermore, hemoglobin and myoglobin had the most significant impact, and their potential substrates may include PE (O-18:2/20:4), PE (O-18:1/20:4), PC (16:0/18:1), and PE (O-18:2/18:2). Nitrosomyoglobin has limited ability to promote lipid oxidation and may protect ether phospholipids from oxidation. The analysis of the volatiles in the model revealed that heme proteins and their derivatives have the ability to induce the production of key aroma compounds. The descending order of effectiveness in inducing the production of aroma compounds is as follows: hemoglobin, myoglobin, hemin, and nitrosylmyoglobin. The effectiveness of Fe2+ and Fe3+ is similar to that of nitrosylmyoglobin.


Assuntos
Hemeproteínas , Lipídeos , Animais , Suínos , Hemeproteínas/química , Hemeproteínas/metabolismo , Lipídeos/química , Produtos da Carne/análise , Compostos Orgânicos Voláteis/química , Temperatura Alta , Odorantes/análise , Oxirredução , Dessecação
9.
J Bacteriol ; 206(6): e0044423, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506530

RESUMO

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Assuntos
Proteínas de Bactérias , Heme , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Heme/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Hemeproteínas/metabolismo , Hemeproteínas/genética , Hemeproteínas/química , Ligação Proteica , Proteobactérias/metabolismo , Proteobactérias/genética
10.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432636

RESUMO

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Assuntos
Fenômenos Fisiológicos Celulares , Heme , Animais , Humanos , Ritmo Circadiano/fisiologia , Heme/metabolismo , Hemeproteínas/metabolismo , Oxirredução , Transdução de Sinais , Espaço Intracelular/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia
11.
Sci Rep ; 14(1): 5374, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438508

RESUMO

In Gram-positive bacteria, sophisticated machineries to acquire the heme group of hemoglobin (Hb) have evolved to extract the precious iron atom contained in it. In the human pathogen Streptococcus pyogenes, the Shr protein is a key component of this machinery. Herein we present the crystal structure of hemoglobin-interacting domain 2 (HID2) of Shr bound to Hb. HID2 interacts with both, the protein and heme portions of Hb, explaining the specificity of HID2 for the heme-bound form of Hb, but not its heme-depleted form. Further mutational analysis shows little tolerance of HID2 to interfacial mutations, suggesting that its interaction surface with Hb could be a suitable candidate to develop efficient inhibitors abrogating the binding of Shr to Hb.


Assuntos
Hemeproteínas , Humanos , Hemeproteínas/genética , Streptococcus pyogenes/genética , Heme , Reconhecimento Psicológico , Ferro
12.
Anal Chem ; 96(8): 3345-3353, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301154

RESUMO

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Assuntos
Antimaláricos , Hemeproteínas , Malária , Humanos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cloroquina/química , Hemina/química , Hemeproteínas/química , Análise Espectral , Plasmodium falciparum
14.
J Inorg Biochem ; 252: 112470, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218137

RESUMO

Two soluble heme analogs of the insoluble malaria pigment hematin anhydride (HA, or ß-hematin), [Fe(III)(protoporphyrin)]2, with either mesoporphyrin (MHA) or deuteroporphyrin (DHA) are characterized by elemental analysis, SEM, IR spectroscopy, electronic spectroscopy, paramagnetic 1H NMR spectroscopy and solution magnetic susceptibility. While prior single crystal and X-ray powder diffraction results indicate all three have a common propionate linked dimer motif, there is considerable solid state variation in the conformation. This is associated with enhanced solubility of MHA and DHA. As with HA, DHA undergoes thermally promoted reversible hydration/dehydration in the solid state. Solution 1H NMR studies of DHA suggest a high spin dimeric structure with the porphyrin methyls distributed between two isomers which are also present in the solid state. These soluble iron(III)porphyrin dimers allow for the first direct solution studies by NMR and UV-Vis spectroscopies of these key species. Taken together the results illustrate the importance and utility of varying the substituents on the periphery of the porphyrin for studying heme aggregation and malaria pigment formation.


Assuntos
Hemeproteínas , Hemina , Porfirinas , Deuteroporfirinas , Compostos Férricos , Heme , Espectroscopia de Ressonância Magnética
15.
Soft Matter ; 20(7): 1475-1485, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38263875

RESUMO

Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome C (Cyto C) heme protein by adsorption from aqueous solutions with other proteins. Although applications of GO-based materials in adsorption are widely studied, the focus on semi-continuous processes remains limited. Adsorption experiments were carried out in batch and fixed bed columns. The effect of pH and ionic strength on adsorption was investigated, and there is evidence that electrostatic interactions between Cyto C and the nanocomposite were favoured at pH = 7; the adsorption capacity decreased as NaCl and KCl concentrations increased, ascribed to the weak electrostatic interaction between the protein and GO active sites in the bionanocomposite. All adsorption isotherm models (Langmuir, Freundlich, Sips) used gave suitable adjustments to the equilibrium experimental data and the kinetic models applied. The maximum adsorption capacity predicted by the Langmuir isotherm was ∼400 mgCytoC gadsorbent,dry-1, and the adsorption thermodynamics indicated a physisorption process. Tests were performed to evaluate the co-adsorption in batch, and the composite was effective in adsorbing Cyto C in solution with bovine serum albumin (BSA) and L-phenylalanine. Fixed bed tests were performed, and although protein adsorption onto nanoparticles can be challenging, the Cyto C adsorbed could be successfully recovered after desorption. Overall, the GO-based hydrogel was an effective method for cytochrome C adsorption, exhibiting a notorious potential for applications in protein separation processes.


Assuntos
Grafite , Hemeproteínas , Citocromos c , Água , Grafite/química , Hidrogéis , Adsorção , Concentração de Íons de Hidrogênio , Cinética
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123902, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281463

RESUMO

Hematin anhydride (ß-hematin), the synthetic analogue of the malaria pigment, "hemozoin", is a heme dimer produced by reciprocal covalent bonds among carboxylic acid groups on the protoporphyrin-IX ring and the iron atom present in the two adjacent heme molecules. Hemozoin is a disposal product formed from the digestion of hemoglobin present in the red blood cells infected with hematophagous malaria parasites. Besides, as the parasites invade red blood cells, hemozoin crystals are eventually released into the bloodstream, where they accumulate over time in tissues. Severe malaria infection leads to significant dysfunction in vital organs such as the liver, spleen, and brain in part due to the autoimmune response to the excessive accumulation of hemozoin in these tissues. Also, the amount of these crystals in the vasculature correlates with disease progression. Thus, hemozoin is a unique indicator of infection used as a malaria biomarker and hence, used as a target for the development of antimalarial drugs. Hence, exploring various properties of hemozoin is extremely useful in the direction of diagnosis and cure. The present study focuses on finding one of the unknown properties of ß-hematin in physiological conditions by using the Z-scan technique, which is simple, sensitive, and economical. It is observed that hemozoin possesses one of the unique material properties, i.e., nonlinearity with a detection limit of âˆ¼ 15 µM. The self-defocusing action causes ß-hematin to exhibit negative refractive nonlinearity. The observed data is analyzed with a thermal lensing model. We strongly believe that our simple and reliable approach to probing the nonlinearity of ß-hematin will provide fresh opportunities for malaria diagnostics & cure in the near future.


Assuntos
Hemeproteínas , Malária , Humanos , Hemina/química , Heme , Malária/diagnóstico , Malária/tratamento farmacológico , Plasmodium falciparum/química
17.
Phys Chem Chem Phys ; 26(2): 695-712, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38053511

RESUMO

To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.


Assuntos
Hemeproteínas , Anaerobiose , Filogenia , Hemeproteínas/metabolismo , Heme/metabolismo , Escherichia coli/metabolismo
18.
Biochemistry ; 63(1): 116-127, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38127721

RESUMO

FixL is an oxygen-sensing heme-PAS protein that regulates nitrogen fixation in the root nodules of plants. In this paper, we present the first photothermal studies of the full-length wild-type FixL protein from Sinorhizobium meliloti and the first thermodynamic profile of a full-length heme-PAS protein. Photoacoustic calorimetry studies reveal a quadriphasic relaxation for SmFixL*WT and the five variant proteins (SmFixL*R200H, SmFixL*R200Q, SmFixL*R200E, SmFixL*R200A, and SmFixL*I209M) with four intermediates from <20 ns to ∼1.5 µs associated with the photodissociation of CO from the heme. The altered thermodynamic profiles of the full-length SmFixL* variant proteins confirm that the conserved heme domain residues R200 and I209 are important for signal transduction. In contrast, the truncated heme domain, SmFixLH128-264, shows only a single, fast monophasic relaxation at <50 ns associated with the fast disruption of a salt bridge and release of CO to the solvent, suggesting that the full-length protein is necessary to observe the conformational changes that propagate the signal from the heme domain to the kinase domain.


Assuntos
Hemeproteínas , Sinorhizobium meliloti , Proteínas Quinases/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Sinorhizobium meliloti/química , Heme/química , Ligantes , Hemeproteínas/metabolismo , Oxigênio/metabolismo , Calorimetria , Proteínas de Bactérias/química
19.
Acta Trop ; 250: 107105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135133

RESUMO

BACKGROUND: Hemozoin is a byproduct of hemoglobin digestion crucial for parasite survival. It forms crystals that can be of interest as drug targets or biomarkers of malaria infection. However, hemozoin has long been considered as an amorphous crystal of simple morphology. Studying the consequences of biomineralization of this crystal during the parasite growth may provide more comprehensive evidence of its role during malaria. OBJECTIVES: This study aimed to investigate the interest of nanoparticles tracker analysis for measuring the concentration and size of hemozoin particles produced from different parasite sources and conditions. METHODS: Hemozoin was extracted from several clones of Plasmodium falciparum both asexual and sexual parasites. Hemozoin was also extracted from blood samples of malaria patients and from saliva of asymptomatic malaria carriers. Nanoparticles tracking analysis (NTA) was performed to assess the size and concentration of hemozoin. RESULTS: NTA data showed variation in hemozoin concentration, size, and crystal clusters between parasite clones, species, and stages. Among parasite clones, hemozoin concentration ranged from 131 to 2663 particles/infected red blood cell (iRBC) and size ranged from 149.6 ± 6.3 nm to 234.8 ± 40.1 nm. The mean size was lower for Plasmodium vivax (176 ± 79.2 nm) than for Plasmodium falciparum (254.8 ± 74.0 nm). Sexual NF54 parasites showed a 7.5-fold higher concentration of hemozoin particles (28.7 particles/iRBC) compared to asexual parasites (3.8 particles/iRBC). In addition, the mean hemozoin size also increased by approximately 60 % for sexual parasites. Compared to in vitro cultures of parasites, blood samples showed low hemozoin concentrations. CONCLUSIONS: This study highlights the potential of NTA as a useful method for analyzing hemozoin, demonstrating its ability to provide detailed information on hemozoin characterization. However, further research is needed to adapt the NTA for hemozoin analysis.


Assuntos
Hemeproteínas , Malária , Parasitos , Plasmodium , Animais , Humanos , Malária/parasitologia , Plasmodium falciparum
20.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069040

RESUMO

Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 µM) caused hemolysis, unlike LF alone or BSA/8OA (250 µM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 µM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.


Assuntos
Carcinoma Hepatocelular , Hemeproteínas , Camundongos , Humanos , Animais , Ceruloplasmina/metabolismo , Ácido Oleico/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Hemeproteínas/metabolismo , Heme/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...