Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
PLoS Pathog ; 20(6): e1012267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857290

RESUMO

HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma. Rapid lateral spread of HSV1 to a mean of 13 keratinocytes wide occurred after 24 hours and free virus particles were observed between keratinocytes, consistent with an intercellular route of spread. Nectin-1 staining was markedly decreased in foci of infection in the epidermis and in the human keratinocyte HaCaT cell line. Nectin-1 was redistributed, at the protein level, in adjacent uninfected cells surrounding infection, inducible by CCL3, IL-8 (or CXCL8), and possibly CXCL10 and IL-6, thus facilitating spread. These findings provide the first insights into HSV1 entry and spread in human inner foreskin in situ.


Assuntos
Quimiocinas , Prepúcio do Pênis , Herpes Simples , Herpesvirus Humano 1 , Queratinócitos , Nectinas , Humanos , Masculino , Queratinócitos/virologia , Queratinócitos/metabolismo , Prepúcio do Pênis/virologia , Prepúcio do Pênis/citologia , Nectinas/metabolismo , Herpes Simples/virologia , Herpes Simples/metabolismo , Quimiocinas/metabolismo , Herpesvirus Humano 1/fisiologia , Moléculas de Adesão Celular/metabolismo , Internalização do Vírus
2.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
3.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861480

RESUMO

Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Herpesvirus Humano 1 , Inflamassomos , Proteínas NLR , Ubiquitina-Proteína Ligases , Humanos , Inflamassomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas NLR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Imediatamente Precoces/metabolismo , Células HEK293 , Replicação Viral , Queratinócitos/virologia , Queratinócitos/metabolismo , Herpes Simples/virologia , Herpes Simples/imunologia , Herpes Simples/metabolismo , Animais
4.
Antiviral Res ; 228: 105934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880195

RESUMO

Herpes simplex virus type 1 (HSV-1), a neurotropic DNA virus, establishes latency in neural tissues, with reactivation causing severe consequences like encephalitis. Emerging evidence links HSV-1 infection to chronic neuroinflammation and neurodegenerative diseases. Microglia, the central nervous system's (CNS) immune sentinels, express diverse receptors, including α7 nicotinic acetylcholine receptors (α7 nAChRs), critical for immune regulation. Recent studies suggest α7 nAChR activation protects against viral infections. Here, we show that α7 nAChR agonists, choline and PNU-282987, significantly inhibit HSV-1 replication in microglial BV2 cells. Notably, this inhibition is independent of the traditional ionotropic nAChR signaling pathway. mRNA profiling revealed that choline stimulates the expression of antiviral factors, IL-1ß and Nos2, and down-regulates the apoptosis genes and type A Lamins in BV2 cells. These findings suggest a novel mechanism by which microglial α7 nAChRs restrict viral infections by regulating innate immune responses.


Assuntos
Colina , Herpesvirus Humano 1 , Microglia , Replicação Viral , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Microglia/virologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos , Replicação Viral/efeitos dos fármacos , Colina/farmacologia , Colina/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Benzamidas/farmacologia , Imunidade Inata , Herpes Simples/virologia , Herpes Simples/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antivirais/farmacologia , Agonistas Nicotínicos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
5.
Biomolecules ; 14(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786010

RESUMO

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Colesterol , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Colesterol/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Linhagem Celular Tumoral , Animais , beta-Ciclodextrinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas tau/metabolismo , Fenótipo , Camundongos
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731826

RESUMO

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Assuntos
Citocinas , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Inflamassomos , Epitélio Pigmentado da Retina , Humanos , Linhagem Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia
7.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Mitocôndrias , Mitocôndrias/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpes Simples/patologia , Animais , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/patologia , Progressão da Doença , Chlorocebus aethiops
8.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652659

RESUMO

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Assuntos
Herpesvirus Humano 1 , Nucleotídeos Cíclicos , Animais , Humanos , Células HEK293 , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Nucleotídeos Cíclicos/metabolismo , Proteínas Virais/metabolismo
9.
Cell Rep ; 43(5): 114135, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652662

RESUMO

Optimal activation of stimulator of interferon genes (STING) protein is crucial for host defenses against pathogens and avoiding detrimental effects. Various post-translational modifications control STING activity. However, the function of interferon (IFN)-stimulated gene (ISG) 15 modification (ISGylation) in controlling STING stability and activation is unclear. Here, we show that the E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice) facilitate STING activation by mediating ISGylation of STING at K150, preventing its K48-linked ubiquitination and degradation. Concordantly, Herc6 deficiency suppresses herpes simplex virus 1 infection-induced type I IFN responses and facilitates viral replication both in vitro and in vivo. Notably, severe acute respiratory syndrome coronavirus 2 protein papain-like protease cleaves HERC5-mediated ISGylation of STING, suppressing host antiviral responses. These data identify a mechanism by which HERCs-mediated ISGylation controls STING stability and activation and uncover the correlations and interactions of ISGylation and ubiquitination during STING activation.


Assuntos
Proteínas de Membrana , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitinas , Animais , Humanos , Camundongos , Citocinas/metabolismo , Células HEK293 , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral , Masculino , Feminino
10.
Alzheimers Res Ther ; 16(1): 68, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570885

RESUMO

BACKGROUND: Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of AD, possibly instigating amyloid-beta (Aß) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging, which may contribute to the elucidation of the role of HSV-1 infection as a potential AD risk factor. METHODS: To shed light into this question, serum anti-HSV IgG levels were correlated with 18F-Florbetaben-PET binding to Aß deposits and blood markers of neurodegeneration (pTau181 and neurofilament light chain) in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers. RESULTS: We showed that increased anti-HSV IgG levels are associated with higher Aß load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aß load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration. CONCLUSIONS: All together, these results suggest that HSV infection is selectively related to cortical Aß deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Idoso , Apolipoproteína E4 , Estudos Prospectivos , Peptídeos beta-Amiloides/metabolismo , Herpesvirus Humano 1/metabolismo , Herpes Simples/diagnóstico por imagem , Herpes Simples/metabolismo , Envelhecimento/metabolismo , Imunoglobulina G , Doença de Alzheimer/diagnóstico
11.
Front Immunol ; 15: 1332588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524121

RESUMO

Naïve CD8+ T cells need to undergo a complex and coordinated differentiation program to gain the capacity to control virus infections. This not only involves the acquisition of effector functions, but also regulates the development of a subset of effector CD8+ T cells into long-lived and protective memory cells. Microbiota-derived metabolites have recently gained interest for their influence on T cells, but much remains unclear about their role in CD8+ T cell differentiation. In this study, we investigated the role of the G protein-coupled receptors (GPR)41 and GPR43 that can bind microbiota-derived short chain fatty acids (SCFAs) in CD8+ T cell priming following epicutaneous herpes simplex virus type 1 (HSV-1) infection. We found that HSV-specific CD8+ T cells in GPR41/43-deficient mice were impaired in the antigen-elicited production of interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), granzyme B and perforin, and failed to differentiate effectively into memory precursors. The defect in controlling HSV-1 at the site of infection could be restored when GPR41 and GPR43 were expressed exclusively by HSV-specific CD8+ T cells. Our findings therefore highlight roles for GPR41 and GPR43 in CD8+ T cell differentiation, emphasising the importance of metabolite sensing in fine-tuning anti-viral CD8+ T cell priming.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Herpes Simples/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interferon gama/metabolismo
12.
J Alzheimers Dis ; 97(3): 1111-1123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306057

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1) is associated with Alzheimer's disease, which goes into a cycle of latency and reactivation. The present study was envisaged to understand the reasons for latency and specific molecular patterns present in the HSV-1. OBJECTIVE: The objective is the molecular dissection of Herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and compare its codon usage patterns with genes modulated during Alzheimer's disease as a part of host-pathogen interaction. METHODS: In the present study, we tried to investigate the potential reasons for the latency of HSV-1 virus bioinformatically by determining the CpG patterns. Also, we investigated the codon usage pattern, the presence of rare codons, codon context, and protein properties. RESULTS: The top 222 codon pairs graded based on their frequency in the HSV-1 genome revealed that with only one exception (CUG-UUU), all other codon pairs have codons ending with G/C. Considering it an extension of host-pathogen interaction, we compared HSV-1 codon usage with that of codon usage of genes modulated during Alzheimer's disease, and we found that CGT and TTT are only two codons that exhibited similar codon usage patterns and other codons showed statistically highly significant different codon preferences. Dinucleotide CpG tends to mutate to TpG, suggesting the presence of mutational forces and the imperative role of CpG methylation in HSV-1 latency. CONCLUSIONS: Upon comparison of codon usage between HSV-1 and Alzheimer's disease genes, no similarities in codon usage were found as a part of host-pathogen interaction. CpG methylation plays an imperative role in latency HSV-1.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Uso do Códon , Doença de Alzheimer/genética , Interações Hospedeiro-Patógeno/genética , Herpes Simples/metabolismo
13.
J Virol ; 98(2): e0176423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193709

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Transdução de Sinais , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Ativação Viral , Latência Viral , Animais , Camundongos
14.
J Virol ; 97(12): e0143823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991364

RESUMO

IMPORTANCE: Herpes simplex virus 1 (HSV-1) establishes lifelong latency in neuronal cells. Following a stressor, the virus reactivates from latency, virus is shed at the periphery and recurrent disease can occur. During latency, the viral lncRNA termed the latency-associated transcript (LAT) is known to accumulate to high abundance. The LAT is known to impact many aspects of latency though the molecular events involved are not well understood. Here, we utilized a human neuronal cell line model of HSV latency and reactivation (LUHMES) to identify the molecular-binding partners of the LAT during latency. We found that the LAT binds to both the cellular protein, TMEM43, and HSV-1 genomes in LUHMES cells. Additionally, we find that knockdown of TMEM43 prior to infection results in a decreased ability of HSV-1 to establish latency. This work highlights a potential mechanism for how the LAT facilitates the establishment of HSV-1 latency in human neurons.


Assuntos
Núcleo Celular , Genoma Viral , Herpes Simples , Herpesvirus Humano 1 , RNA Longo não Codificante , Latência Viral , Humanos , Linhagem Celular , Herpes Simples/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , RNA Longo não Codificante/genética , Ativação Viral/genética , Latência Viral/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Neurônios/metabolismo , Neurônios/virologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Genoma Viral/genética
15.
J Virol ; 97(11): e0110723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902400

RESUMO

IMPORTANCE: Immune evasion and latency are key mechanisms that underlie the success of herpesviruses. In each case, interactions between viral and host proteins are required and due to co-evolution, not all mechanisms are preserved across host species, even if infection is possible. This is highlighted by the herpes simplex virus (HSV) protein immediate early-infected cell protein (ICP)47, which inhibits the detection of infected cells by killer T cells and acts with high efficiency in humans, but poorly, if at all in mouse cells. Here, we show that ICP47 retains modest but detectable function in mouse cells, but in an in vivo model we found no role during acute infection or latency. We also explored the activity of the ICP47 promoter, finding that it could be active during latency, but this was dependent on genome location. These results are important to interpret HSV pathogenesis work done in mice.


Assuntos
Herpes Simples , Proteínas Imediatamente Precoces , Simplexvirus , Animais , Camundongos , Herpes Simples/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Evasão da Resposta Imune , Regiões Promotoras Genéticas , Simplexvirus/genética , Simplexvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral
16.
J Virol ; 97(9): e0066923, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655939

RESUMO

Boosting herpes simplex virus (HSV)-specific immunity in the genital tissues of HSV-positive individuals to increase control of HSV-2 recurrent disease and virus shedding is an important goal of therapeutic immunization and would impact HSV-2 transmission. Experimental therapeutic HSV-2 vaccines delivered by a parenteral route have resulted in decreased recurrent disease in experimental animals. We used a guinea pig model of HSV-2 infection to test if HSV-specific antibody and cell-mediated responses in the vaginal mucosa would be more effectively increased by intravaginal (Ivag) therapeutic immunization compared to parenteral immunization. Therapeutic immunization with HSV glycoproteins and CpG adjuvant increased glycoprotein-specific IgG titers in vaginal secretions and serum to comparable levels in Ivag- and intramuscular (IM)-immunized animals. However, the mean numbers of HSV glycoprotein-specific antibody secreting cells (ASCs) and IFN-γ SCs were greater in Ivag-immunized animals demonstrating superior boosting of immunity in the vaginal mucosa compared to parenteral immunization. Therapeutic Ivag immunization also resulted in a significant decrease in the cumulative mean lesion days compared to IM immunization. There was no difference in the incidence or magnitude of HSV-2 shedding in either therapeutic immunization group compared to control-treated animals. Collectively, these data demonstrated that Ivag therapeutic immunization was superior compared to parenteral immunization to boost HSV-2 antigen-specific ASC and IFN-γ SC responses in the vagina and control recurrent HSV-2 disease. These results suggest that novel antigen delivery methods providing controlled release of optimized antigen/adjuvant combinations in the vaginal mucosa would be an effective approach for therapeutic HSV vaccines. IMPORTANCE HSV-2 replicates in skin cells before it infects sensory nerve cells where it establishes a lifelong but mostly silent infection. HSV-2 occasionally reactivates, producing new virus which is released back at the skin surface and may be transmitted to new individuals. Some HSV-specific immune cells reside at the skin site of the HSV-2 infection that can quickly activate and clear new virus. Immunizing people already infected with HSV-2 to boost their skin-resident immune cells and rapidly control the new HSV-2 infection is logical, but we do not know the best way to administer the vaccine to achieve this goal. In this study, a therapeutic vaccine given intravaginally resulted in significantly better protection against HSV-2 disease than immunization with the same vaccine by a conventional route. Immunization by the intravaginal route resulted in greater stimulation of vaginal-resident, virus-specific cells that produced antibody and produced immune molecules to rapidly clear virus.


Assuntos
Herpes Genital , Herpes Simples , Herpesvirus Humano 2 , Animais , Feminino , Cobaias , Humanos , Adjuvantes Imunológicos , Anticorpos Antivirais , Glicoproteínas/metabolismo , Herpes Genital/prevenção & controle , Herpes Simples/metabolismo , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 2/fisiologia , Imunização , Linfócitos T , Vagina/imunologia , Vagina/virologia
17.
PLoS Pathog ; 19(6): e1010966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343008

RESUMO

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection. We have previously shown that vhs is also involved in regulating the nuclear-cytoplasmic compartmentalisation of the virus transcriptome, and in the absence of VP22 a number of virus transcripts are sequestered in the nucleus late in infection. Here we show that despite expressing minimal amounts of structural proteins and failing to plaque on human fibroblasts, the strain 17 Δ22 virus replicates and spreads as efficiently as Wt virus, but without causing cytopathic effect (CPE). Nonetheless, CPE-causing virus spontaneously appeared on Δ22-infected human fibroblasts, and four viruses isolated in this way had all acquired point mutations in vhs which rescued late protein translation. However, unlike a virus deleted for vhs, these viruses still induced the degradation of both cellular and viral mRNA suggesting that vhs mutation in the absence of VP22 is necessary to overcome a more complex disturbance in mRNA metabolism than mRNA degradation alone. The ultimate outcome of secondary mutations in vhs is therefore the rescue of virus-induced CPE caused by late protein synthesis, and while there is a clear selective pressure on HSV1 to mutate vhs for optimal production of late structural proteins, the purpose of this is over and above that of virus production.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Transcriptoma , Ribonucleases/metabolismo , Vírion/metabolismo , RNA Mensageiro/genética , Herpes Simples/genética , Herpes Simples/metabolismo
18.
J Med Virol ; 95(4): e28718, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185840

RESUMO

Herpetic-related neuralgia (HN) caused by varicella-zoster virus (VZV) infection is one of the most typical and common neuropathic pain in the clinic. However, the potential mechanisms and therapeutic approaches for the prevention and treatment of HN are still unclear. This study aims to provide a comprehensive understanding of the molecular mechanisms and potential therapeutic targets of HN. We used an HSV-1 infection-induced HN mouse model and screened the differentially expressed genes (DEGs) in the DRG and spinal cord using an RNAseq technique. Moreover, bioinformatics methods were used to figure out the signaling pathways and expression regulation patterns of the DEGs enriched. In addition, quantitative real-time RT-PCR and western blot were carried out to further confirm the expression of DEGs. HSV-1 inoculation in mice resulted in mechanical allodynia, thermal hyperalgesia, and cold allodynia, following the infection of HSV-1 in both DRG and spinal cord. Besides, HSV-1 inoculation induced an up-regulation of ATF3, CGRP, and GAL in DRG and activation of astrocytes and microglia in the spinal cord. Moreover, 639 genes were upregulated, 249 genes were downregulated in DRG, whereas 534 genes were upregulated and 12 genes were downregulated in the spinal cord of mice 7 days after HSV-1 inoculation. GO and KEGG enrichment analysis suggested that immune responses and cytokine-cytokine receptor interaction are involved in DRG and spinal cord neurons in mice after HSV-1 infection. In addition, CCL5 and its receptor CCR5 were significantly upregulated in DRG and spinal cord upon HSV-1 infection in mice. And blockade of CCR5 exhibited a significant analgesic effect and suppressed the upregulation of inflammatory cytokines in DRG and spinal cord induced by HSV-1 infection in mice. HSV-1 infection-induced allodynia and hyperalgesia in mice through dysregulation of immune response and cytokine-cytokine receptor interaction mechanism. Blockade of CCR5 alleviated allodynia and hyperalgesia probably through the suppression of inflammatory cytokines. Therefore, CCR5 could be a therapeutic target for the alleviation of HSV-1 infection-induced HN.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Neuralgia , Animais , Camundongos , Citocinas , Modelos Animais de Doenças , Herpes Simples/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Inflamação/metabolismo , Neuralgia/metabolismo , Quimiocina CCL5/metabolismo , Receptores CCR5/metabolismo
19.
J Appl Toxicol ; 43(9): 1368-1378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36999203

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory loss and dementia and is characterized by a decline in cognitive functions. Brain infections, especially induced by herpes simplex virus type-1 (HSV-1), are suggested to play a key role in the pathogenesis of AD. Within the scope of this study, two different AD models (Tau model and amyloid beta [Aß]) were created in the SH-SY5Y cell line, and HSV glycoprotein B (gB) was applied to the cell line and on the generated AD models. Study groups (n = 3) were designed as (1) control, (2) HSV-gB group, (3) retinoic acid (RA) and brain derived neurotrophic factor (BDNF) induced Alzheimer's model (AD), (4) RA and BDNF induced Alzheimer's model + HSV-gB (ADH), (5) Aß 1-42 peptide-induced Alzheimer's model (Aß), and (6) Aß 1-42 peptide-induced Alzheimer's model + HSV-gB (AßH). Levels of complement proteins and cytokines were determined comparatively. In addition, specific markers of AD (hyperphosphorylated Tau proteins, Aß 1-40 peptide and amyloid precursor protein) were measured in all groups. HSV-gB administration was found to increase Aß and hyperphosphorylated Tau levels, similar to AD models. In addition, our data confirmed that the immune system and chronic inflammation might have a crucial role in AD development and that HSV-1 infection might also be an underlying factor of AD.


Assuntos
Doença de Alzheimer , Herpes Simples , Neuroblastoma , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas , Herpes Simples/metabolismo , Glicoproteínas , Proteínas do Sistema Complemento
20.
Virus Res ; 328: 199087, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894069

RESUMO

Piwi-interacting RNAs (piRNAs) are a class of non-coding RNAs that play a key role in spermatogenesis. However, little is known about their expression characterization and role in somatic cells infected with herpes simplex virus type 1 (HSV-1). In this study, we systematically investigated the cellular piRNA expression profiles of HSV-1-infected human lung fibroblasts. Compared with the control group, 69 differentially expressed piRNAs were identified in the infection group, among which 52 were up-regulated and 17 were down-regulated. The changes in the expression of 8 piRNAs were further verified by RT-qPCR with a similar expression trend. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the target genes of piRNAs were mainly involved in antiviral immunity and various human disease-related signaling pathways. Furthermore, we tested the effects of four up-regulated piRNAs on viral replication by transfecting piRNA mimics. The results showed that the virus titers of the group transfected with piRNA-hsa-28,382 (alias piR-36,233) mimic decreased significantly, and that of the group transfected piRNA-hsa-28,190 (alias piR-36,041) mimic significantly increased. Overall, our results revealed the expression characteristics of piRNAs in HSV-1-infected cells. We also screened two piRNAs that potentially regulate HSV-1 replication. These results may promote a better understanding of the regulatory mechanism of pathophysiological changes induced by HSV-1 infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , RNA de Interação com Piwi , Humanos , Masculino , Fibroblastos/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , RNA de Interação com Piwi/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Herpes Simples/genética , Herpes Simples/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...